

On behalf of:

Imprint

As a federally owned enterprise, GIZ supports the German Government in achieving its objectives in the field of international cooperation for sustainable development.

Published by

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices:

Bonn and Eschborn, Germany

Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-1022 F +49 61 96 79-80 1022 E proklima@giz.de I www.giz.de/proklima

Cool Contributions fighting Climate Change (C4)/ Proklima

Contact: Philipp.Munzinger@giz.de

and

Umweltbundesamt

Wörlitzer Platz 1 06844 Dessau-Roßlau

T +49 340-2103-0

F +49 340-2103-2285

E info@umweltbundesamt.de

I www.umweltbundesamt.de

Authors

Leon Becker & Philipp Munzinger (GIZ Proklima)

Dr. Daniel de Graaf (Umweltbundesamt)

Acknowledgement for Inputs and Review

Dr. Sukumar Devotta, Ole Nielsen (UNIDO)

Dr. Daniel Colbourne, Rolf Hühren,

Irene Papst, Dietram Oppelt (HEAT GmbH)

Tim Anders, Kai Berndt, Philipp Denzinger, Marion Geiss, Daniela Lassmann, Maraida Licerio, Maike Kauffmann, Marcel Nitschmann, Lara Teutsch,

Smita Vichare (GIZ)

Design/layout:

creative republic, Thomas Maxeiner Visual Communications, Frankfurt/Germany

Photo credits/sources:

- © AGRAMKOW
- © GIZ Proklima / Leon Becker, Curllan Bhola, Asiedu Danquah, June B. Oliveros II, Gianfranco Vivi
- © Sonobond Ultrasonics
- © PT Pertamina
- © nikomsolftwaer/stock.adobe.com
- © shutterstock
- © Ball LunLa/shutterstock

Proclaimer

The information in this report, or upon which this report is based, has been obtained from sources the authors believe to be reliable and accurate. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, GIZ GmbH does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.

URL links

This publication contains links to external websites. Responsibility for the content of the listed external sites always lies with their respective publishers. When the links to these sites were first posted, GIZ checked the third-party content to establish whether it could give rise to civil or criminal liability. However, the constant review of the links to external sites cannot reasonably be expected without concrete indication of a violation of rights. If GIZ itself becomes aware or is notified by a third party that an external site it has provided a link to gives rise to civil or criminal liability, it will remove the link to this site immediately. GIZ expressly dissociates itself from such content.

On behalf of

The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Division KI II 7 International Climate Finance, International Climate Initiative

11055 Berlin, Germany

T +49 30 18 305-0 F +49 30 18 305-43 75

E KIII7@bmu.bund.de

I www.bmu.bund.de

GIZ is responsible for the content of this publication.

Printed on 100% recycled paper, certified to FSC standards.

Printing and distribution:

Braun & Sohn Druckerei GmbH & Co. KG, Maintal

Status

Eschborn, October 2019

Table of Abbreviations

_	<u> </u>	
А	AC	Air Conditioning
	ACR&HP	Air Conditioning, Refrigeration & Heat Pump
	ACs	Air Conditioners
	AHRI	Air Conditioning, Heating and Refrigeration Institute
	AL	Aluminium
	ANSI	Approved American National Standard
В	BAU	Business as Usual
	BEE	Indian Bureau of Energy Efficiency
	BMU	Germany's Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
	ВТИ	British Thermal Unit
С	C4	Cool Contributions Fighting Climate Change
		Cooling Capacity
		China Compulsory Certification
		China Environmental United Certification Center
		Cumulated Energy Demand
	CHEAA	China Household Electrical Appliances Association
		Carbon Monoxide
		Carbon Dioxide
		Coefficient of Performance
	CSN	Complete Satisfaction Number
		Cooling Seasonal Performance Factor
		Copper

D	DMT	Deutsche Montan Technologie Gmbh
Ε	EC	Electronically Commutated
W	EE	Energy Efficiency
	EER	Energy Efficiency Ratio
	EEV	Electronic Expansion Valve
	EIA	Environmental Investigation Agency
	EN	European Norm
	EOL	End-Of-Life
	EPA	Environmental Protection Agency in Ghana
	EU	European Union
F	FEC0	Chinese Foreign Economic Cooperation Office
G	GCI	Green Cooling Initiative
	GHG	Greenhouse Gas
	GIZ	Deutsche Gesellschaft für Internationale Zusammenarbeit
	GWP	Global Warming Potential
Н	H ₂ O	Water
	HC	Hydrocarbon
	HCI	Hydrochloric Acid
	HCFCs	Hydrochlorofluorocarbons
	HF	Hydrofluoric Acid
	HFCs	Hydrofluorocarbons
	HFO	Hydrofluro-olefin
	HP	Horse Power Heat Pump
	НРМР	HCFC Phase-Out Management Plan
	HPWH	Heat Pump Water Heater

T	IDU	Indoor Unit
	IEA	International Energy Agency
		International Electrotechnical Commission
	IKI	Internationale Klimaschutzinitiative (International Climate Initiative)
		Intergovernmental Panel on Climate Change
		Indian Seasonal Energy Efficiency Ratio
	ISO	International Organization for Standardization
J	JARN	Japan Air Conditioning, Heating & Refrigeration News, Ltd.
	JRAIA	Japan Refrigeration and Air Conditioning Industry Association
L	LCIA	Lifecycle Impact Assessment
	LFL	Lower Flammability Limit
	LPG	Liquefied Petroleum Gas
М	MEPS	Minimum Energy Performance Standards
	MIT	Mitigation
N	NAMA	Nationally Appropriate Mitigation Actions
	NC	National Committee
	NDCs	Nationally Determined Contributions
	NOU	National Ozone Unit
0	ODP	Ozone Depleting Potential
	ODS	Ozone Depleting Substance
	ODU	Outdoor Unit
Q	QCR	Qualification, Certification and Registration

R	RAC	Refrigeration And Air Conditioning
S	SC	Sub Committee
		Seasonal Coefficient Of Performance
		Seasonal Energy Efficiency Ratio
	Split ACs	Split-Type Air Conditioning Systems
T	TC	Technical Committee
	TEAP	Technology And Economic Assessment Panel
	TESDA	Philippines' Technical Education And Skills Development Authority
	TEV	Thermal Expansion Valve
	TFA	Trifluoro Acetic Acid
	ТоТ	Training of Trainers
U	U4E	United For Efficiency
	UBA	Umweltbundesamt (German Environment Agency)
		Upper Flammability Limit
	UNEP	United Nations Environmental Program
	UNFCCC	United Nations Framework Convention On Climate Change
	UNIDO	United Nations Industrial Development Organization
W	WG	Working Group

Foreword

Room air conditioning appliances become more and more popular worldwide. 129 million units have been sold in 2017 (JARN, 2018), including roughly 100 million single-split *air conditioners* (ACs). Compared to the year 2007, this means a growth in sales of such appliances by 64% - in only ten years. The reasons for this trend are a growing world population, a rising middle class in countries with emerging markets and, more recently, rising temperatures due to climate change.

Ironically, the latter is caused to a considerable share by air conditioning itself through the energy consumption associated with the use of air conditioning equipment. The *International Energy Agency* provides in a current report (IEA, 2018) that 20% of the energy consumption in buildings is due to air conditioning. Further, it projects that energy consumption in this field will more than triple by the year 2050. This trend is driven mainly by the residential sector where single-split AC appliances are the dominating type of AC equipment. Accelerated energy efficiency levels for these type of appliances in the short term are crucial to minimize or even decrease the currently growing impact on the climate.

The significant climate impact of room ACs is not only made by fossil fuel-based electricity supply, but also a result of the predominant and massively growing use of halogenated refrigerants such as R22, R410A, and, to a growing extent, R32 with high *global warming potential* (GWP), which today have a significant share of the overall greenhouse gas emissions caused by air conditioners. For single-split room ACs, the loss of the initial refrigerant charge over the lifetime is 100% or even more, caused through leakages during operation as well as during installation and disposal at the end of life. Therefore, the use of natural refrigerants with very low GWP not only can result in superior energy performance, but also lead to negligible GHG emissions through refrigerant losses during service and at the end of life.

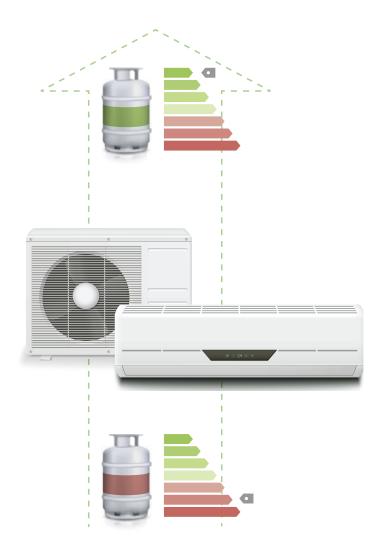
This guide clearly shows that single-split room ACs equipped with R290 (propane) exhibit significant environmental advantages through good energy performance and a GWP close to zero. The guide shall contribute to addressing and demystifying all aspects relevant for the successful introduction of R290 split Air Conditioners.

A good example that proofs the viability of this option comes from India where a domestic manufacturer offers a single-split air conditioner with R290 refrigerant. The product is the most energy-efficient appliance of this product group on the Indian market. More than 600,000 units have been sold to end users so far with no reported incidents because they are safely installed by qualified and certified personnel. This example should encourage other governments and manufacturers to introduce their R290 solutions to the domestic and worldwide market. Considering the phase-down of hydrofluorocarbons such as R410A and R32 according the recent Kigali Amendment to the Montreal Protocol, which already started with the first step of -10% of the baseline, R290 is today the only viable and future-proof choice for residential and light commercial single-split air conditioning.

Dr. Bettina Rechenberg

Bethna 1Ce

Director General of Division III – Sustainable Production and Products, Waste Management German Environment Agency


Purpose of this guide

Split-type air conditioning systems (split ACs) are currently the most commonly used appliance for space cooling worldwide. In many regions split ACs operate with average to low energy efficiency levels and use highly climate-damaging refrigerants. Large amounts of fossil fuel-based electricity is consumed and leaking hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants often make them account for a substantial proportion of greenhouse gas (GHG) emissions in the refrigeration and air conditioning (RAC) sectors in developing countries. This trend may become more significant as the worldwide demand for split ACs is growing at a rapid pace driven by increasing population, a rising middle class, and urbanisation.

According to IEA (2018) estimates, space cooling accounted for around 10% of total electricity demand worldwide in 2016. With business as usual, the energy demand from air conditioners will more than triple by 2050. The increase in absolute numbers of split ACs will be the most significant from just over 850 million to over 3.7 billion.

Market assessments that GIZ carried out in numerous countries show that accelerating the transition to more energy-efficient split ACs with R290 (propane) refrigerant will play a key role in creating a more sustainable RAC sector. Leapfrogging to high efficiency appliances using R290 reduces the energy consumption and GHG emissions and thus provides a significant opportunity to contribute to national climate action plans (*Nationally Determined Contributions* (NDCs)). *Figure 1* and 2 on *page 8* sketches different mitigation scenarios for the market uptake of energy-efficient R290 split AC units and depicts the total and direct GHG emission reduction potential until 2050. A market share of 50% until 2050 may cut down total GHG emission by 25% by 2050¹.

While there is an urgent need for action in the sector, there are several barriers to a market transition, such as safety concerns about the flammability of R290, lacking awareness

and uncertainties about new technologies, as well as limited understanding of the proper treatment of the refrigerants in the process of manufacturing, installing, operating, and disposing of appliances. In addition, there is often a hesitance to invest in such technology, despite significant reduction potential in energy costs.

¹ Assumptions are based on studies by HEAT GmbH and GIZ. The trend of the curves show that the market uptake of R290 split ACs will achieve significant reductions in GHG emissions after 2025 when old inefficient appliances reach their end-of life and the total share of R290 split ACs in the overall stock increases to significant numbers.

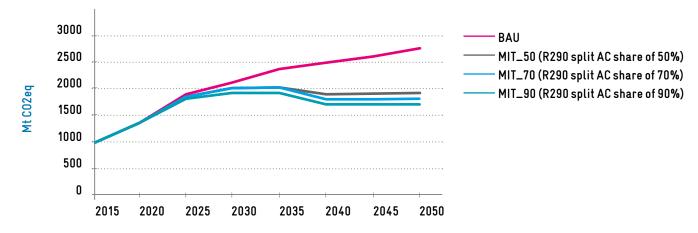


Figure 1: Total GHG emissions due to the use of split ACs (2015-2050)

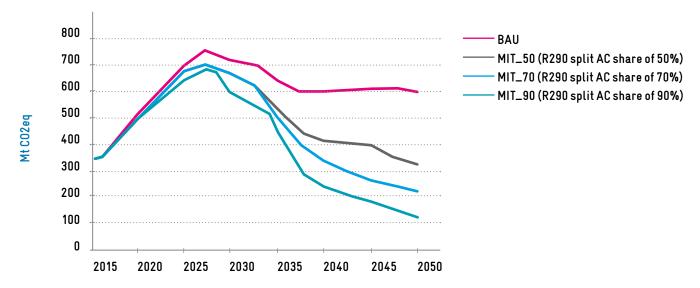


Figure 2: Total direct GHG emissions due to the refrigerant leakage of split ACs (2015-2050)

The objective of this resource guide is to inform relevant stakeholders about the factors that are deemed crucial for a successful market transition to energy-efficient R290 split ACs. The guide addresses:

Political decision makers who are confronted with energy efficiency and refrigerant policy making, and who would like to improve their understanding about R290 split ACs in order to take informed consultations with the industry and other relevant bodies.

National standardisation, custom and certification bodies that are tasked with the development and issuance of standards on performance testing, product safety, and technician skills required for R290 split ACs.

The **split AC industry**, including manufacturers, assemblers, contractors, and installation companies, which are considering to transition or expand their business to manufacture, sales, and servicing of R290 split ACs.

This guideline intends to address knowledge gaps as well as the concerns that hinder the introduction and application of R290 split AC. This guide tackles all topics relevant to R290 split AC and provides a set of references for more detailed information at the end of each chapter.

The information in this guide is built on practical experience gained in GIZ Proklima projects (including IKI projects like the conversion of Godrej & Boyce production line to R290 split AC in India, Cool Contributions fighting Climate Change, Green Chillers NAMA project Indonesia, Green Cooling Initiative) and interviews with industry players. The guideline is intended to enable key stakeholders to take effective and coordinated measures to introduce Green AC technology in their country. Ultimately, it aims to encourage policy makers to facilitate the market uptake of energy-efficient split ACs using R290.

Content

1.	Technical design and components of split AC	12
	1.1. Working principle of room AC systems	. 14
	1.2. Refrigerant characteristics	. 15
	1.3. Energy Efficiency Performance	. 16
2.	Technical particularities of R290 split ACs and their safety features	. 20
	2.1. R290 refrigerant	. 20
	2.2. Specific technical features for R290 split AC	. 23
3.	Manufacturing of R290 split ACs	. 29
4.	Safety standards for R290 split ACs	. 33
	4.1 Safety standards for R290 split AC unit	. 33
	4.2. Safety standards for performance and product safety testing of R290 split ACs	. 38
5.	Energy performance testing, standards and labels	. 40
	5.1. Minimum Energy Performance Standards	. 42
	5.2. Energy labelling	. 42
6.	Eco-labelling of R290 Room ACs	. 44
7.	Installation and servicing of split ACs with flammable refrigerant	47
	7.1. Installation	.48
	7.2. Servicing and repair	.48
	7.3. Decommissioning and disposal	.50
	7.4. Qualification, certification and registration of AC technicians	.50

List of Tables

Table 1:	Overview of most common cooling capacity classes for single-split ACs, expressed in different metric units
Table 2:	Overview of refrigerants for split type ACs adapted from GIZ Proklima Input in U4E (2017)
Table 3:	Availability of components related to EE for medium- and low-GWP refrigerants in AC (TEAP, 2019).
Table 4:	Comparison of various thermo-physical properties of selected refrigerants
Table 5:	Commercial Specifications of the refrigerant according to standard AHRI 700 and DIN 8960
Table 6:	Technical safety features for R290 split AC units; adapted from adapted from GIZ Proklima (2008 & 2010); Caravatti, 2018
Table 7:	Summary of general technical obligations under safety standards for split AC systems
Table 8:	Refrigerant charge size limits for R290 according to safety standards for split ACs
Table 9:	Minimum room size according to R290 refrigerant charge and installation height of the appliance based on Equation (2).
Table 10:	Overview of energy performance metrics and testing standards
Table 11:	Reference outdoor temperature bin distribution adapted from Indian Weather Data Handbook, 2014 (BEE, 2015)
Table 12:	Overview of ISO 14024 ecolabels for split ACs

List of Figures

Figure 1:	Total GHG emissions due to the use of split ACs (2015–2050)	8
Figure 2:	Total direct GHG emissions due to the refrigerant leakage of split ACs (2015-2050)	8
Figure 3:	Main components of IDU	12
Figure 4:	Main components of ODU	13
Figure 5:	Basic setup and operation of split AC cooling system using vapour compression cycle	14
Figure 6:	Comparison of fixed speed and inverter compressor behaviour (Godrej, 2018c)	16
Figure 7:	Flammability range of R290	21
Figure 8:	Principal design approach for explosion protection (Colbourne, R290 product development)	23
Figure 9:	Example for label on IDU	26
Figure 10:	Example for label on ODU	26
Figure 11:	Exemplary set-up of an assembly line for non-flammable refrigerants and with safety areas required for R290 specified (red triangles) split air conditioners ODU; adapted from (© AGRAMKOW)	30
Figure 12:	Ventilation system of refrigerant gas charging station	32
Figure 13:	Gas detector at gas charging station	32
Figure 14:	Ventilation system and gas alarm of test performance lab	32
Figure 15:	ATEX certified control panel	32
Figure 16:	Example of the relationship between refrigerant charge and cooling capacity as a function of SEER of an AC system with R290 adapted from GIZ Proklima (2018b)	33
Figure 17:	Testing categories and its scope	38
Figure 18:	India' mandatory energy label and star rating, valid from 01/01/2018 until 31/12/2019 (Source: BEE, 2015), 5-star label split AC with 5.8 ISEER and R290 refrigerant (Godrej , 2018b)	43
Figure 19:	Life cycle impact assessment of a single-split AC using R410A as the refrigerant (UBA, 2018)	44
Figure 20:	Formal procedure for Blue Angel	46
Figure 21:	Arrangement of tools and potential temporary flammability zones adapted from Godrej/Hühren (2018d)	49
Figure 22:	Important steps to establish QCR infrastructure based on HEAT (2017).	51

1. Technical design and components of split AC

Demand for space cooling is growing rapidly due to a rising middle class, urbanisation, and climate change. Split ACs already dominate the market share of space cooling appliances in many markets and are projected to increase significantly in the next decades.

The most popular split-type air conditioning systems are single-split ACs, also known as mini-splits. The single-split AC consists of two modules that are connected by refrigerant piping and electrical cables:

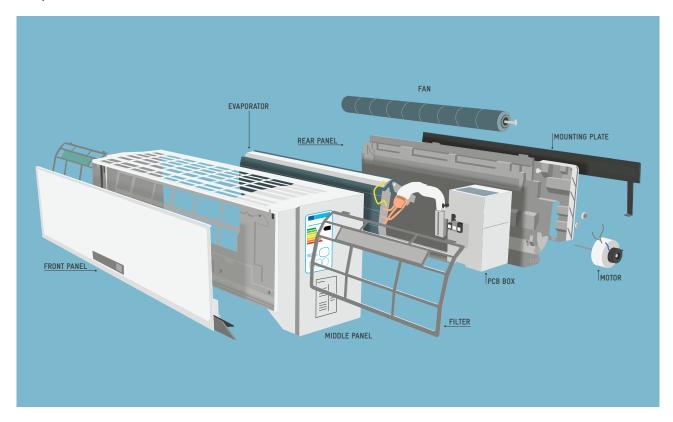


Figure 3: Main components of IDU

- An indoor unit (IDU) including the evaporator (when in cooling mode) and a fan that is mounted inside the air-conditioned room (Figure 3).
- Worldwide, split ACs are mostly used for cooling purposes only and therefore usually just non-reversible systems are needed. In more moderate climates, split AC technology is offered which combines cooling and heating mode in one
- An outdoor unit (ODU) containing the compressor, condenser (when in cooling mode), fan, and expansion device which is installed outside (*Figure 4*).

reversible system. This guide focuses on the cooling purpose. In addition to single-split AC systems, the market offers multi-split AC systems comprising one ODU linked to several IDUs. Multi-split systems may be suitable for space

cooling (or heating) of multiple rooms or large rooms. This guide focuses on single-split units because they are the most commonly used system for residential customers and are also widely employed in office spaces and

commercial areas such as hotels and supermarkets. The relatively low investment, simple installation, and low space requirement are main advantages of single-split ACs.

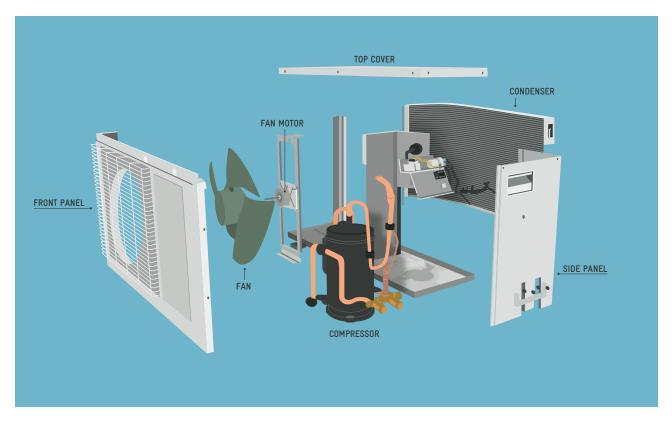


Figure 4: Main components of ODU

The available cooling capacity classes for single-split ACs range roughly from 1.8 to $7~\rm kW$ (6,000 to 24,000 Btu/h). The suitable cooling capacity is defined by the actual space cooling demand taking into account room size, heat load,

and end-user requirements. The cooling capacity classes are expressed in different metrics units depending on the considered country or region. The most common classes are listed in the following conversion *Table 1*:

Common Cooling Capacity Classes								
1.76 kW	2.64 kW	3.52 kW	5.28 kW	7.03 kW				
6.000 Btu/h	9,000 Btu/h	12,000 Btu/h	18,000 Btu/h	24,000 Btu/h				
0.5 RT ^[1]	0.75 RT	1 RT	1.5 RT	2 RT				

Table 1: Overview of most common cooling capacity classes for single-split ACs, expressed in different metric units

1.1. Working principle of room AC systems

The cooling technology is based on the common vapour compression refrigeration cycle as illustrated in *Figure 5*. It mainly comprises four components: evaporator, compressor, condenser, and an expansion device.

The refrigeration cycle contains liquid refrigerant at high pressure in the liquid line passing through an expansion device (restrictor), which typically could be a capillary tube (for most split air- conditioner) or an expansion valve. Here the refrigerant pressure is reduced abruptly causing a part of the liquid to immediately vaporize. This effect lowers the temperature of the liquid-vapor refrigerant mixture below the surrounding air temperature. The cold mixture is then routed through the injection line into the evaporator. The liquid part of the refrigerant mixture begins to evaporate by absorbing heat from the surrounding, which is transferred

from the metal of the evaporator coil. The circulating room air is cooled accordingly. Once the refrigerant has been vaporised, it is drawn through the suction line into the compressor. The compressor compresses the vapour and thus raises the pressure to a value corresponding to the saturated vapour temperature, which lies above the temperature of the surrounding air. The high-pressure refrigerant vapour now passes through into the condenser (which may be a finned tube or microchannel heat exchanger), where it is condensed back into a liquid state thereby rejecting the energy it absorbed in the evaporator and compressor to the ambient air. The high-pressure liquid refrigerant now moves to the bottom of the condenser coils. To complete the refrigeration cycle, it is transferred back into the refrigerant liquid line.

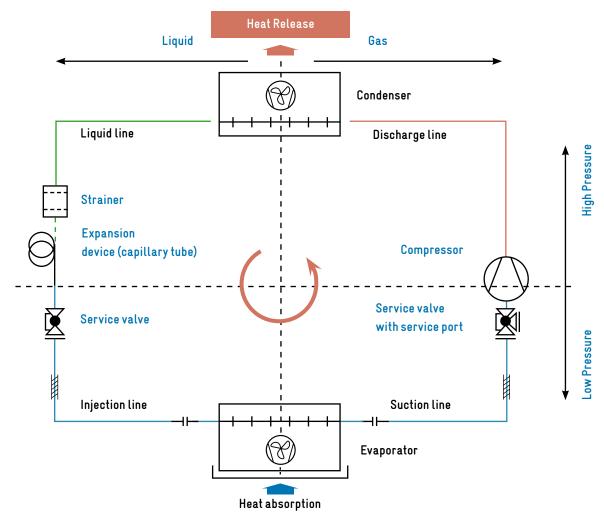


Figure 5: Basic set-up and operation of split AC cooling system using vapour compression cycle

1.2. Refrigerant characteristics

Currently, the most common refrigerants for split ACs are R22, R410A, and R32. The ozone-depleting R22 is subject to the ongoing international HCFC phase-out under the Montreal Protocol. Non-Article 5 (developed countries) countries have fully phased out HCFCs as refrigerant in new units and the phase-out in Article 5 countries (developing countries) will be completed by 2030. R22 is primarily replaced by the HFC mixture R410A (50% R32 and 50% R125) and R32. Both are HFCs with high *global*

warming potential (GWP) and are subject to the HFC phase-down under the Kigali Amendment to the Montreal Protocol. The gradual reduction of HFCs to 10-20% of the baseline by the late 2040s has been agreed. On 1st of January 2019, the Kigali Amendment entered into force. The first reductions by non-Article 5 countries is due in 2019. Article 5 countries will follow with a freeze of HFC consumption levels in 2024 and for some countries in 2028.

	Refrigerant	R22	R410A	R32	Low GWP HFC/ HFO blends	R290
	GWP ²	1,760	1,924	677	150 – 300	3
Refrige	erant Efficiency	High	Low	High	Medium	High
	Cost of refrigerant ³	Low/Medium	Medium/High	Medium	High	Low
Subject to patent on:	· Substance · Production · Systems	· No · Yes · Yes	· Yes · No · Yes	· No · Yes · Yes	·Yes ·Yes ·(Probably)	· No · No · Yes
	ISO 817 safety Classification	A1 - lower toxicity and non- flammable	A1 – lower toxicity and non-flammable	A2L — lower toxicity and lower flammability	A2L to A3 — lower toxicity and lower to higher flammability	A3 — lower toxicity and higher flammability
	environemental ct/degradation products ⁴	HF, HCl and CO ₂	HF and CO ₂	HF and CO ₂	TFA, HF and $\mathrm{CO_2}$	$\rm H_2O$ and $\rm CO_2$
	Training requirements	General safe handling of refrigerants; Responsible han- dling of ODS	General safe handling of refrigerants	General safe handling of refrig- erants; Training and certification of manufacture and service technicians on flammable refrigerants	General safe handling of refrig- erants; Training and certification of manufacture and service technicians on flammable refrigerants	General safe handling of refrig- erants; Training and certification of manufacture and service technicians on flammable refrigerants
Use restrictions/ implications		Subject to HCFC phase-out	Restricted use or ban in regions with GWP based HFC phase out regimes (e.g. EU-F-Gas)	Restricted use or ban in regions with GWP based HFC phase out regimes (e.g. EU-F-Gas)	Restricted use or ban in regions with GWP based HFC phase out regimes (e.g. EU-F-Gas)	No ban

Table 2: Overview of refrigerants for split type ACs adapted from GIZ Proklima Input in U4E (2017)

² Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report, 2013 $\,$

³ While these are indicative of current costs, future costs of R290, R32 and low-GWP blends will depend significantly on the scale of production due to the Kigali Amendment to the Montreal Protocol, and may be lower if sufficient scale is achieved.

⁴ Survey of selected fluorinated GHGs, Danish Ministry of the Environment, 2014; and according to comments received by Prof. Dr. Andreas Konrath

1.3. Energy efficiency performance

Compressor performance and size of heat exchanger largely determine the overall system energy efficiency of split ACs, so these components need to be targeted primarily to improve energy efficiency. Optimisation of the heat exchanger for condenser and evaporator can be achieved through increasing the surface area and the choice of material. For instance, use of:

- Optimised fin arrangements and geometries
- Turbulators/extended internal tube surfaces
- Extruded micro-channels.

These technologies aim to increase the amount of heat transferred per m² of exchanger area or per m³ of exchanger volume, thereby reducing the approach temperature difference between air and refrigerant.

Introducing a variable-speed compressor also results in energy savings, as the technology can adapt system cooling capacity to part loads with slight changes in cooling demand. Unlike fixed speed AC compressor which operates in an on/off mode, the speed of the compressor motor changes in proportion to the difference between set temperature and the actual room temperature.

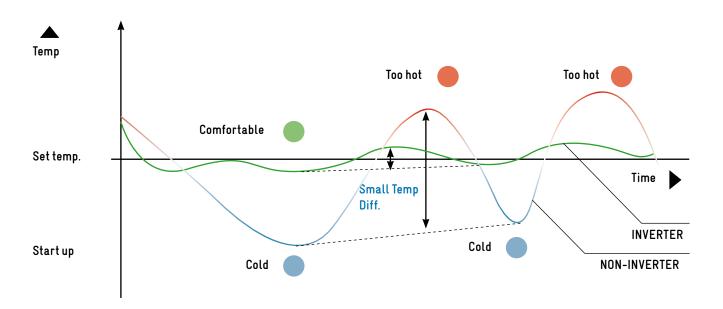


Figure 6: Comparison of fixed speed and inverter compressor behaviour (Godrej, 2018c)

Furthermore, a careful selection of the compressor capacity according to the cooling need and an appropriate refrigerant charge to ensure operation under the most favourable thermodynamic conditions can also have a significant effect on the performance. A selection of efficiency measures are presented in *Table 3* and further details on improvement options are compiled by Usinger (2016).

The online platform TopTen publishes a list of the best currently available split ACs in terms of energy efficiency in Europe and China. Park et al. (2017) and GIZ Proklima (2018a) have conducted studies to assess the cost, energy, and climate performance of the available equipment in relevant additional markets.

Table 3: Availability of components related to EE for medium- and low-GWP refrigerants in AC (TEAP, 2019)

Component	Applicable to ref circuit	Available today?				Max potential	Incremental	Applicability to climate region		
			Presently in use?	Remarks	Necessary components	improve- ment	cost for RAC unit	LAT	MAT	НАТ
Compressors										
Higher efficiency	Х	Υ	Υ	Mostly used for rotary				X	Х	X
-Inverter driven	х	Y	Υ	Mostly used for rotary	Inverter, dedicated compressor	20% to 30%	20%	Х	X	Х
- two stage compression	х	Υ	L	Very limited availability		10%	10% to 20%	X	X	X
- motor efficiency controllers		Υ	L	Standard		same	same	Χ	X	Χ
Energy-efficien	t fan mators									
– EC fan motors		Υ	Υ	Reduce energy, heat load	Controller	7% to 15%	15% to 25%	Х	Х	Х
- variable/ fixed-speed		Y	Υ					X	X	X
- optimized fan blades		Υ	Y					Х	Х	Х
-tangential fans		Υ	Υ	For indoor unit only				X	X	Х
- improved axial fans		Y	Y	For outdoor unit only				Х	Х	Х
Expansion devic	es									
- electronic expansion valves	х	Υ	L		EEV and controller	15% to 20%	15%	Х	Х	Х
-fixed orifice	х	Υ	L		RAC heating	Less efficiency	negative	Х	Χ	Х
- capillary tubes	Х	Υ	Υ		TEV	Heating mode	negative	Х	Х	Х

	Applicable to ref circuit		Presently in use?	Remarks		Max potential	Incremental	Applicability to climate region		
Component		Available today?			Necessary components	improve- ment	cost for RAC unit	LAT	MAT	HA
leat exchanger	s									
-Microchannel condenser coil	Y	Y	Υ	Only condenser	AL/AL	15%	negative	X	Χ	X
-Microchannel evaporator coil	N	N	N				Less cost compared to the fin and tube			
- smaller tube diameter for condenser coil	Х	Υ	Y	Υ	CU/AL	10% to 40%	negative	X	X	Χ
- smaller tube diameter for evaporator coil		Y	Υ	Υ	CU/AL	10% to 40%	negative	х	X	Х
Adiabatic condensers		Υ	Very limited	Only in high ambient	Filter and water treatment	25% to 30%	20% to 35%			Χ
Pipe insulation		Υ	Υ	Normal practice	Pipe insulation	<2%	Standard	X	Х	Х
Refrigerant	Х	Υ	Υ	See RTOC 2014, 2018	Refrigerant	See RTOC 2014, 2018	+/- depends on the region	Х	Х	Х
Defrost techniques	Υ	Υ		For HP only	controller		НР	X	Χ	Х
– hot gas, reverse cycle		Υ	L	НР	4 WAY VALVE	negative	Heating	Х	Х	Х
- resistance heaters for Heating		Υ	Υ	some regions	Electric heater	negative	Some areas	Х	Х	Х
- on demand control		Υ	Υ		controller		same	X	Х	Х
Controls										
- dynamic demand controllers		Υ	Υ		standard		standard	Х	Х	х
Reducing head pressure	х	Υ	Υ		Var speed cond. fans, controller	2% to 3% per 1 K	various		Х	Х

(N = no; Y = yes; L = limited; X = applicable. LAT = Low Ambient Temperature; MAT = Medium ambient temperature; and HAT = High ambient temperature)

Table 3: Availability of components related to EE for medium- and low-GWP refrigerants in AC (TEAP, 2019)

"Transitioning the market from R22 and R410A directly to R290 as a sustainable solution for Ghana's growing AC market is promoted as one of the key climate measures in Ghana's Climate Action Plans."

Emmanuel Osae-Quansah, Head of climate change and Ozone department, National Ozone Officer, Environmental Protection Agency Ghana

MARKET INTRODUCTION OF GREEN ACs IN GHANA

Ghana has committed itself to abating climate-damaging refrigerants such as R22 and R410A from its AC market and transitioning instead to natural refrigerants by including the RAC sector in its NDCs to the *United Nations Framework convention on Climate Change* (UNFCCC) Paris Agreement. By increasing the market share of energy-efficient ACs using climate-friendly refrigerants, it is estimated that about 7.86 Mt CO₂ could be avoided by 2030.

The Green Cooling Initiative (GCI) is supporting the Environmental Protection Agency (EPA) in preparing the market introduction of energy-efficient R290 split ACs in Ghana. In cooperation with the local AC dealers, the project is currently introducing 380 R290 split ACs to the market. To ensure the safe market introduction of this new technology in Ghana, Midea, and GIZ have jointly trained the AC dealer's technicians to safely handle this new but flammable refrigerant during installation, servicing, and repair.

Midea representative providing lectures on R290 split AC to Ghanaian technicians as part of the market introduction in 2018

2. Technical particularities of R290 split ACs and their safety features

In order to start adopting a new AC refrigerant, manufacturers have to balance different refrigerants' criteria, including thermodynamic performance (e.g. capacity, temperature, and efficiency), safety conditions (e.g. pressure, toxicity, and flammability), and compatibility with system materials, availability, cost, and environmental impact (Park et al., 2019) as well as commercial lifetime, which is influenced by (international) regulations and cost implications. The use of R290 as refrigerant for a single-split AC system

constitutes some particularities for the system design. The flammability of propane presents the key challenge. This has to be considered during the development of the system to ensure the safety.

2.1. R290 refrigerant

The *hydrocarbon propane* (C_3H_8) is a naturally occurring gas. Through the decomposition and reaction of organic matter over long periods of time, a variety of hydrocarbons are in the depth of the earth. Propane can be separated from other petrochemicals and refined for commercial use. As a *liquefied petroleum gas* (LPG), propane can be converted to liquid under relatively low pressures.

Thanks to its favourable thermodynamic properties, propane can be used as an energy-efficient refrigerant and has been assigned the refrigerant designation "R290". *Table 4* lists various thermophysical properties of certain refrigerants as a means of comparing their potential to achieve high efficiency.

In general cycle efficiency is influenced by properties which help to reduce pressure losses and improve heat transfer. Specifically, these include:

- Low liquid and vapour viscosities
- High liquid specific heat
- High liquid and vapour thermal conductivities
- High latent heat.

It can be seen that across these common refrigerants, R290 exhibits the most desirable properties.

Refrigerant	Critical temperature (°C)	Liquid viscosity (Pa s x10 ⁸)	Vapour viscosity (Pa s x10 ⁶)	Liquid specific heat (kJ/kg K)	Liquid thermal conductivity (W/m K)	Latent heat (kJ/kg)
R22	96.1	216	11.4	1.17	0.095	205
R407C	86.0	211	11.3	1.42	0.096	210
R410A	71.4	161	12.2	1.52	0.103	221
R290	96.7	126	7.4	2.49	0.106	375

Table 4: Comparison of various thermo-physical properties of selected refrigerants

A high degree of purity and a very low water content have to be guaranteed in order for it to be suitable as commercial refrigerant. Respective requirements are summarised in <u>Table 5</u>.

Standard Property	Limit Value		
	AHRI 700		DIN 8960
Composition:			
Propane	≥ 99.5% Weight		≥ 99.5% Volume
C3 and C4 saturated hydrocarbons	≤ 2% Weight		
Isobutane			≤ 0,44% Volume
n-butane			≤ 0,15% Volume
unsaturated C4 compounds			≤ 0,01% Volume
Smell		None	
Water Content	≤ 10 ppm Weight		≤ 12 ppm Weight

Table 5: Commercial specifications of the refrigerant according to standard AHRI 700 and DIN 8960

With a safety classification of "A3" under ISO 817, R290 is generally of low toxicity but is flammable. R290 only

becomes flammable within a certain concentration range in the air. The range is illustrated in *Figure 7*.

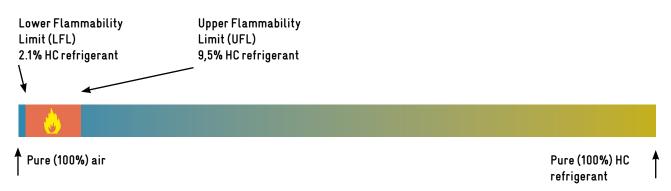


Figure 7: Flammability range of R290

For safety reasons, some fraction of the lower *flammability limit* (LFL) should not be exceeded in closed spaces or rooms. Previously a value corresponding to one-fifth of the LFL (or "practical limit") was used in EN378-Part 1, but now as safety concepts are advancing, the value differs depending upon which concept is to be adopted.

Integrated into these safety concepts is the recognition that R290 is heavier than air, which means that it will accumulate near the ground in the event of a leakage.

Further, it is odourless so it cannot be detected by smell. This must be taken into account when determining the quantity of R290 permitted; specific approaches for identifying such limits are addressed in *Chapter 4*. A flammable mixture only ignites, if there is a sufficient energy source to start the reaction such as a spark, an open flame or a hot surface. Combustion of R290 will result in various combustion products, primarily *carbon monoxide* (CO), *carbon dioxide* (CO₂), and *water* (H₂O). A fire with R290 should only be fought with CO₂ or dry powder extinguishers.

Safety guidelines are not only applicable during the design phase (*Chapter 2.2*) and production phase (*Chapter 3*) of a split AC but also regarding storage, transport, and installation area of the equipment.

Safe handling of refrigerant cylinders

For handling and transporting R290 cylinders, ideally local regulations for *liquefied petroleum gas* (LPG) have to be followed. If there are none, at least the following measures have to be taken in order to prevent any accidents:

- Correct naming and distinct "flammable" marking on cylinders and transaportation vehicles
- Store and use in ventilated areas away from ignition sources (avoid exposure to heat, no smoking)
- Safe transportation in upright, capped and secure position (protect valve)
- Use of goggles and gloves when handling R290 to minimise the possibility of frost bite from contact with liquid as with handling any other refrigerant.

Local production and supply of R290 in Indonesia by PT Pertamina

In Indonesia, state-owned oil and natural gas corporation, PT Pertamina, is a local producer and supplier of propane. At their refinery in Palembang, LPG is extracted from crude oil and then used as fuel gas. Through further purification steps, propane is also processed to suitable industrial gas as well as refrigerant gas. At three filling stations in Indonesia, R290 is bottled and then distributed across the country.

The company has supplied refrigerant for several hydrocarbon chillers and expects a growing supply of R290 AC appliances

Filling station for R290 refrigerant in Jakarta, Indonesia (© PT Pertamina)

2.2. Specific technical features for R290 split AC

Due to safety considerations, the design adjustments mainly deal with minimising the charge size while maintaining high energy efficiency. Using R290 as refrigerant requires manufacturers to optimise AC systems by changing compressors and compressor oil, heat exchangers (to match the refrigerant's properties), and expansion device (Park et al., 2019). The combination of the favourable thermodynamic properties of R290 and improved heat exchanger design allows the minimisation of the refrigerant charge compared to conventional refrigerants.

The safety design consists of improved tightness, elimination of ignition sources, measures to enhance dispersion of leaked refrigerant and risk mitigation measures. *Figure 8* illustrates the principal considerations for explosion protection when applying flammable refrigerants.

In particular, the technical features, shown in *Table 6* should be included for a R290 split AC to optimise the operational safety:

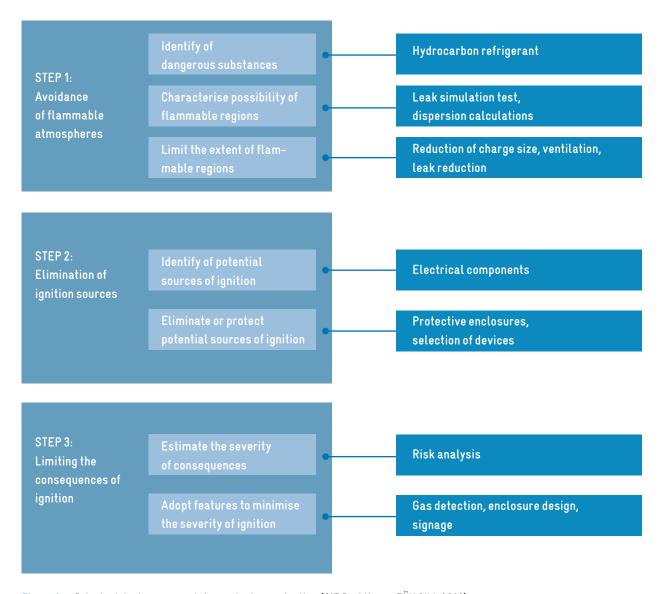


Figure 8: Principal design approach for explosion protection (GIZ Proklima & TÜV Süd, 2010)

Ensure good system tightness

Design and manufacture the refrigerant circuit with as many features as possible to minimise the possibility of refrigerant leakage within the occupied space(s). For example:

- No detachable joints (particularly for IDU)
- Brazed connections (e.g. instead of flare joints)
- Protect from external mechanical damage
- Minimise transmission of vibrations from compressor, fans, etc.
- · Avoid possibilities for corrosion
- Use approved circuit components
- · Rigorous production and quality control
- · Leak detection test proved tightness of components, piping, and connections.

Avoid potential sources of ignition associated with appliance

Design and construct the AC to ensure that if a leak was to occur, refrigerant would not be exposed to any potential source of ignition associated with the unit. For example:

- Replace components with non-sparking or Ex-type parts⁵
- · Use plastic instead of metal fan blades and a brushless electric motor to avoid sparks from contact with cowling panels
- Put main contactors in separate panels or use solid state contactors
- Encapsulate relays
- Any hot or sparking components are positioned away from wherever any refrigerant leak could flow to or accumulate, typically by means of a leak simulation test.

Add leak detection

Some form of gas leak detection system may be integrated into the product so that flammability mitigation measures can be activated. For example:

- Gas detector
- Ultrasonic receiver that detects the sound produced when a leak occurs with sonic flow
- · Monitor system parameters (pressure, temperature, compressor current, etc.) that indicates a deficit of charge.

When a leak is detected, initiate protective measures, such as terminating compressor operation, switching on the IDU and ODU blowers and/or closing safety solenoid valves to prevent all the refrigerant from being released.

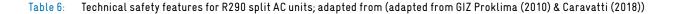
Enhance dispersion of leaked refrigerant

- Ensure sufficient air flow rate to dilute R290 in the event of leakage
- · Optimise unit housing design so that exiting concentration is minimised.

Minimise refrigerant charge

Minimise the flammable refrigerant charge quantity while retaining high energy efficiency e.g. minimise coil bends
and use of smaller tube diameters for heat exchangers.

Use of solenoid shut-off valves


- In the event of a leak, a shut-off valve in the liquid or delivery line and where necessary in the suction line can close
 in order to prevent flow of refrigerant from ODU to the possible leak hole in the IDU.
- During off-mode valve(s) could be normally closed so that the refrigerant is automatically prevented from flowing towards the leak.

Inform about flammable refrigerant

Ensure that anyone initiating work on the system is made aware of the presence of flammable refrigerant inside and as far as possible the precautions they should take.

- Flammable refrigerant signage visible on indoor and outdoor unit
- · Flame symbol and instruction manual symbol on parts subject to maintenance or repair
- Warning label for room requirement
- Installation/service/operation manual
- Signage and instruction for transportation on packaging for pre-charged equipment.

As addressed above, the split AC system has to be specifically designed to ensure minimal risk due to the flammability of R290. Using R290 as drop-in refrigerant for existing R22 systems or any other system poses a greater safety risk as the appropriate technical features are not necessarily in place. Additionally, drop-ins might affect the efficiency and lifetime of system components such as compressors, which are designed for particular refrigerants and their properties. Therefore, simply refilling existing HCFC or HFC refrigerant-based appliances with R290 is strongly advised against.

In addition, any split AC needs to have a specification plate on both indoor and outdoor unit. These labels provide important technical information to any AC technician working on the system. *Figure 9* and *Figure 10* show examples for the required information on the labels.

Figure 9: Example for label on IDU

MODEL	MSAEBU-12HRFN	17-QRD6GW		
INDOOR MODEL	MSAEBU-12HRFN	17-QRD6GV		
OUTDOOR MODEL	MOB30-12HFN7-0	QRD6GW		
COOLING CAPACITY	12000Btwh			
HEATING CAPACITY	13000Btw/h			
EXCESSIVE OPERATING	DISCHARGE	2,6MPa		
PRESSURE	SUCTION	1.0MPa		
POWER SOURCE	220-240V~50H	tz, 1Ph		
RATED CURRENT	10.0A			
RATED INPUT	2200W			
REFRIGERANT	R290/0.38kg			
OUTDOOR UNIT RESISTANCE CLASS	IP 24			
SEER	7.1			
SCOP	4.6			
NOISE POWER (INDOOR/OURDOOR)	49.0/57.0			

12K外机

Figure 10: Example for label on ODU

References and relevant resources:	
Split AC market assessment	GIZ Proklima (2018), Cost, energy and climate performance assessment of split ACs in Asian Countries (market assessment for other countries in Africa and Latin America available upon request)
	Park, Shah and Gerke (2017), Assessment of commercially available energy efficient room air conditioners including models with low global warming potential (GWP) refrigerants (study by Lawrence Berkeley National Laboratory; focus on China, Europe, India, Japan, South Korea, and the United States)
	Best available air conditioners in Europe (TopTen EU) and in China (Top10 China)
Technical Safety Features for R290 split ACs	GIZ Proklima (2010), Guidelines for the safe use of hydrocarbon refrigerants, Part 5: Equipment Design and Development
	GIZ Proklima (2012), Natural Refrigerants: Sustainable Ozone- and Climate-Friendly Alternatives to HCFCs, II. Safety of Natural Refrigerants p. 95f
Technical Safety Features for R290 split ACs	GIZ Proklima (2010), Guidelines for the safe use of hydrocarbon refrigerants Godrej, Training Manual for Godrej Split Air–Conditioners with Hydrocarbons (R290 refrigerant), Chapter 3.1 (available upon request)

LOW-CARBON AIR CONDITIONING THROUGH R290 SPLIT ACs IN COSTA RICA

Costa Rica is a global model and front-runner in transitioning to climate-friendly technologies and practices. Nevertheless, the use of advanced space cooling technology with low-GWP refrigerants has not been well established in the market. This can also be seen in the RAC sector's significant share of 12% (in 2012) of the country's total GHG emissions. By using propane instead of HFC refrigerant in AC systems, Costa Rica can significantly reduce its HFC emissions and thereby further contribute to its ambitious low emission development path.

As part of the Cool Contributions fighting Climate Change (C4) Project in Costa Rica, the Ministry of Energy and Environment in cooperation with the GIZ imported energy-efficient R290 split ACs for demonstration and trainings of AC technicians. The appliances are installed in various types of buildings, including hotels and government buildings.

The project is implemented in a close cooperation with ICE, one of the national electricity utilities in Costa Rica. More information on the project can be found on: https://www.international-climate-initiative.com/en/nc/details/project/cool-contributions-fighting-climate-change-c4-15_I_242-452/

"In a changing world, where the industry seeks day to day to meet the technological needs of people, to be at the forefront of new options is essential. Costa Rica has taken important steps in this line on issues such as: renewable generation, electric vehicles, and decarbonisation of the economy. Now it is time to take the step to new options of air conditioning where R290 refrigerant will be an indisputable protagonist. It will be indispensable for our country to know all the benefits of this gas and to be trained in its use and its applications."

Marvin Donel Zuñiga Alvarez, Engineer from Ensayos, Laboratory of Energy Efficiency

Costa Rican technicians installing Godrej R290 split AC at the Climate Change Office of the Ministry of Environment and Energy (MINAE)

3. Manufacturing of R290 split ACs

Up to now the actual production of R290 split ACs is still low compared to the global volumes of split AC unit sales. The capacity to manufacture R290 units is so far limited to China and India. There are over 20 production lines already converted to manufacturing R290 split ACs. In India, the local manufacturer Godrej & Boyce (hereafter: Godrej) is commercially producing R290 split ACs - mainly for the domestic market – with approx. 650,000 units sold until July 2019. Several Chinese manufacturers transformed their production lines in the past, among them Midea, Haier, TCL, Gree, Hisense, Changhong, AUX, and Yair. A large number of portable/movable room ACs are being produced with R290.

During the first stage (2013 to 2015) of China's *HCFC Phase-out Management Plan* (HPMP) with funds of the Multilateral Fund, China has already converted 21 room AC production lines to R290 making up for a production capacity of 4,500,000 units per year. Three room AC compressor production lines have been also converted to R290 with a production capacity of 5,400,000 units per year. China is in the process of converting another 20 room AC production lines and another four room AC compressor production lines to R290 as a part of the second stage of China's HPMP until 2020 (hydrocarbons21, 2018).

Other countries, e.g. Egypt (8 production lines), Pakistan, Brasil, etc. are about to convert productions lines under their stage II *HCFC phase out management plans* (HPMPs) of the Montreal Protocol.

Basic Set-Up

Figure 11 illustrates the exemplary set-up of a split AC production line. The main components to assemble R290 split AC units are identical with any other split AC factory, so the conversion of existing conventional production lines for R22 or R410A technology can be realised with relatively little investment.

The main changes are related to incorporating and reinforcing safety measures with regards to handling flammable refrigerant in the facility. Areas where R290 is stored, charged or handled demand for specific risk mitigation strategies. The hazardous areas are highlighted in Figure 11. Safety measures include a good ventilation system, gas detection, and alarm, warning signs as well as a complete and automatic shut off in case of an emergency. The key areas in the R290 production line should be equipped with real-time monitoring systems and set with alarms of different levels. Appropriate training of the personnel to raise awareness of the risk and to instruct them on how to avoid dangerous situations is an essential complement along with the hardware equipment. In addition, assessments need to be undertaken in all areas of the production line to identify and avoid ignition risks caused by electrostatic charges.

In specific, the following set-up including relevant safety features is recommended (GIZ Proklima, 2012):

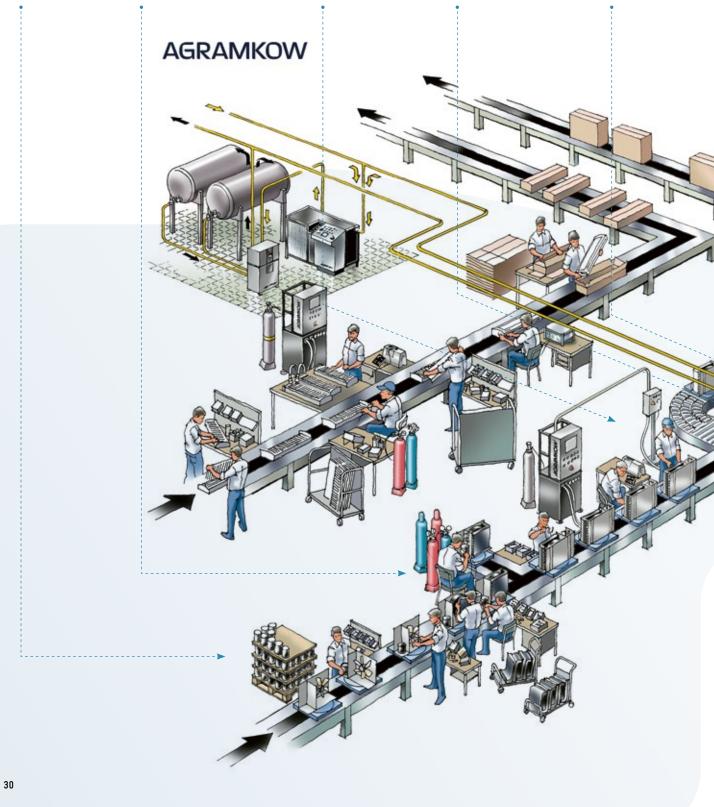
- Gas sensors and alarm systems
- Ex-type electrical hardware in areas handling refrigerant
- Ventilation system in areas handling refrigerant.

Among the areas where specific safety measures need to be added for R290 are:

- Refrigerant storage area
- Refrigerant charging system
- Ultrasonic sealing of process tube
- Leak detection after charging
- Product performance test chamber and laboratory
- Product repair area.

References and relevant resources:					
Technical Safety Features for production line of R290 split ACs	GIZ Proklima (2012), Guidelines for the safe use of flammable refrigerants in the production of room air-conditioners				
Finance Support for conversion of production line	GIZ Proklima (2018c), Coordinating finance for sustainable refrigeration and air conditioning				

1. Srew Removal, Earth Wiring, Compressor Fitting


3. High Pressure Testing Helium Leak Test

4. Refrigerant Charging

5. Ultrasonic Tube Sealing

6. Leak Detection after Charging

7. High Voltage Testing

se Fitting 9. Performance Testing Lab/ Operational

U. Visual Inspection
Packaging

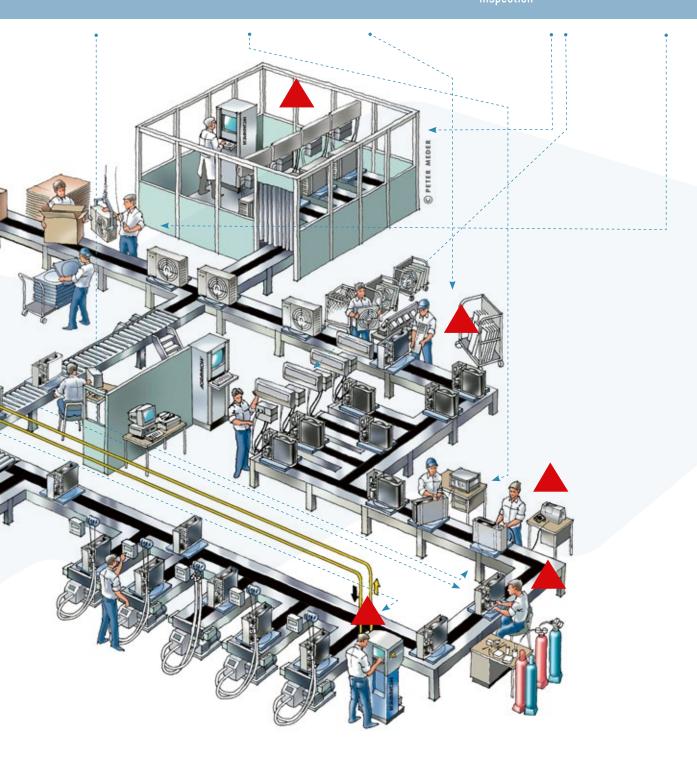


Figure 11: Exemplary set-up of an assembly line for non-flammable refrigerants and with safety areas required for R290 specified (red triangles) split air conditioners ODU; adapted from (© AGRAMKOW)

Production line conversion of R22 split AC to R290 split AC for Godrej

In 2012, Godrej converted one of its production facilities to assemble ODUs for R290 split ACs with support of GIZ Proklima. The area is equipped with the following equipment:

- R290 gas charging station and performance test chamber including ventilation ducting with
 two speed options as well as a gas alarm mechanism (placed on the ground) with complete power
 cut-off interlock.
- Repair area refrigerant gas recovery system with ducting and gas alarm interlock.
- Fire proof junction boxes in refrigerant charging areas.
- Equipotential grounding of all equipment has been done.

Figure 12: Ventilation system of refrigerant gas charging station

Figure 14: Ventilation system and gas alarm of test performance lab

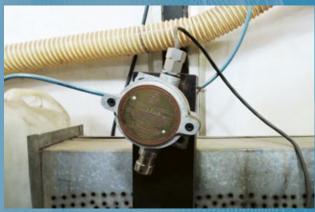


Figure 13: Gas detector at gas charging station

Figure 15: ATEX certified control panel

4. Safety standards for R290 split ACs

4.1. Safety standards for R290 split AC unit

The introduction of split ACs with R290 requires a set of technical standards, which adequately address both flammability/charge size and energy efficiency. There are two international standardisation organisations that publish relevant safety standards with regard to the use of R290 in split-type ACs: The *International Standardisation Organisation* (ISO) and the *International Electrotechnical Commission* (IEC). ISO 5149-1 and *European Norm* (EN) 378 are horizontal standards or product group standards covering overarching requirements based on common characteristics for a range of *Air Conditioning, Refrigeration and Heat Pump* (ACR&HP) systems. The product standard IEC 60335-2-40 specifically defines requirements for ACs and heat pumps.

Each of these standards prescribe a number of requirements, one of the most important critical ones for the application of R290 in split AC systems being the refrigerant charge size limit. Charge sizes of split AC systems with flammable refrigerants need to be optimized in order to maintain acceptably low flammability risk safety levels while ensuring high energy efficiency. *Figure 16* provides an illustration of how the nominal cooling capacity of an AC system is related to its refrigerant charge for a range of different *seasonal energy efficiency ratios* (SEERs). The diagram highlights the interdependence of system performance and required refrigerant charge. In general, it can be concluded that a higher energy efficiency requires higher charge size.

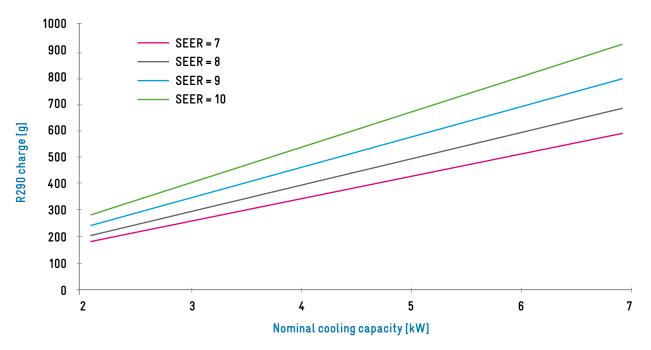


Figure 16: Example of the relationship between refrigerant charge and cooling capacity as a function of SEER of an AC system with R290 adopted from GIZ Proklima (2018b)

Current requirements for systems using flammable refrigerants

ACR&HP safety standards deal with a wide range of hazards associated with ACR&HP systems and equipment, besides refrigerant charge issues. Aspects related to refrigerant safety and the associated design, construction and handling requirements represent a large share of the addressed hazards. *Table 7* provides a summary of the important topics handled by ACR&HP safety standards that are relevant for the use of hydrocarbons in split ACs. Generally, if a product falls

into the scope of a product standard, then that standard should be used. However, if a horizontal/group standard is more up to date and can be suitably applied to the product then it can also be applied. Often manufacturers may "mix-and-match" as appropriate. Further, it has to be noted that both standards are currently under revision and might contain changes regarding charge size and safety measures in the next version.

Category	IEC 60335-2-40			
	EN 60335-2-40			
Scope	Factory-made whole ACs, heat pumps, dehumidifiers, and partial units			
Limits on refrigerant charge amount	Approx. 1 kg of hydrocarbon in a direct system inside (depending on room size) and 5 kg outside or special enclosure			
Marking	Requirement of flammability warning symbols			
Strength pressure	Specification of pressure tests for systems and components (where applicable)			
Electrical equipment	Specification of design, construction, and test requirements			
Sources of ignition	Description of what to consider and how to avoid a potential source of ignition, including a test method option			
Information & instructions	Details concerning the installation, use, service, maintenance, and disposal of the equipment so that users, operators, and technicians are aware of how to handle flammability hazards			
System tightness	Systems generally have to be constructed as "sealed" or "hermetically sealed" systems if they are to use flammable refrigerants indoors (e.g. no or limited number of reusable mechanical connections or fittings)			
Pressure limiting/relief devices	The need for additional devices to limit or relieve excess pressure may apply to smaller systems if flammable refrigerants are used			
Secondary/indirect systems	Additional components for secondary or indirect refrigerant circuits (such as those using water or brine) are required to vent a leak that has occurred from the evaporator into the secondary circuit if the primary refrigerant circuit exceeds a certain charge size			
Gas sensors	Gas sensors are be mandated for certain situations to initiate mitigation measures such as ventilation, alarms, terminating electrical supplies, etc. These may be applicable to systems using flammable refrigerants in machinery rooms or even for systems in occupied spaces.			

Table 7: Summary of general technical obligations under safety standards for split AC systems⁶

As demonstrated in *Table 8* and *9*, the choice of refrigerant type affects the requirements for several design and construction aspects. Accordingly, such requirements can potentially influence the cost of systems and convenience for manufacturers and installers. However, refrigerant

charge size limits should be met as they are ultimately the most important requirements within safety standards in terms of viability for application of natural refrigerants. This applies in particularly to hydrocarbons (HCs).

⁶ This is a summary of the key requirements. More details on requirements can be found in the standard documents themselves.

	Maximum charge	Allowable charge
ISO 5149-1, EN 378-1	1 kg ⁷ / 1.5 kg	0.04 x h x A ^{0.5}
IEC 60335-2-40	1 kg	0.04 x h x A ^{0.5}

Table 8: Refrigerant charge size limits for R290 according to safety standards for split ACs

Height [m]	0.0	1	1.4	1.0	2.2	2.0	J	
Refrigerant Charge [g]				Minimum room	size (m²)			
200	63	23	12	7	5	3	3	
250	99	36	18	11	7	5	4	
300	142	51	26	16	11	8	6	
350	193	70	36	21	14	10	8	
400	253	91	46	28	19	13	10	
450	320	115	59	36	24	17	13	

Table 9: Minimum room size according to R290 refrigerant charge and installation height of the appliance based on Equation (2)

73

44

Safety standards have a particular relevance with regard to application and use restrictions for refrigerants in split AC systems.

142

395

Note that all these standards are at present under revision and will likely be updated with new charge limit concepts.

According to EN 378: Part 1, the maximum allowable charge size (Equation 1) for a given room and the minimum required room size (Equation 2) for a given split AC unit with flammable refrigerant charge can be calculated:

21

16

(1)
$$m_{max} = 2.5 \times LFL^{5/4} \times h_0 \times A^{1/2}$$

29

(2)
$$A_{min} = m^2 / (2.5 \times LFL^{5/4} \times h_0)^2$$

m_{max}: maximum allowable refrigerant charge [kg]

m: refrigerant charge [kg]

A_{min}: minimum required room size [m²]

A: room size [m²]

LFL: lower flammability limit [kg/(m³])

h₀: installation height [m]

Installation

500

⁷ For human comfort, higher allowable charge size for any other purpose

As indicated above, current safety standards tend to rely on two types of constraints for refrigerant charge amounts: (i) the maximum charge being an overall cap according to the application and location of the system, and (ii) an allowable charge as a function of room size and in some cases the installation height of the equipment. While these types of standards put constraints on the application of R290 split ACs, these could be resolved over time by adapting the technology of ACR&HP system to increase the safety. Such additional safety measures offsetting the potential flammability risked associated with a greater charge quantity per room size include:

- Improving leak tightness of the system, over and above assumed standard practice
- Adopting equipment housing design to help disperse leaked refrigerant better than that assumed with conventional housing designs
- Guaranteeing sufficient airflow rate within the room, to ensure that leaked refrigerant does not stagnate at the floor and its concentration stays below the LFL
- Inclusion of valves or other components to limit the refrigerant amount released in the event of a leak.

The last two measures may be applied in connection to leak indicators (e.g. gas sensors, ultrasonic detection, or system parameters), so they can be activated on demand.

References and relevant resources:				
Relevant safety standards	 IEC Standard 60335-2-40 ISO 5149 Standard 			
Guidance on national process to modify safety standards	GIZ Proklima (2018b), International Safety Standards in Air Conditioning, Refrigeration & Heat Pump Environmental Investigation Agency (EIA) (2017), Smarter Standards: Vital for Kigali Amendment Success			

Advancing safety standards for R290 split AC

Besides accelerating their efficiency levels, split AC systems need to use refrigerants with a particularly low GWP in order to achieve national obligations under the Kigali Amendment. Current safety standards pose substantive barriers to the implementation of R290 by means of obstructive refrigerant charge size limits. Therefore, countries are encouraged to support the adaptation according to technological improvements of these safety standards to allow larger charge sizes while including guidance on safe application. Interventions to modify safety standards differ from country to country,

depending on their level of enforcement and their level of accordance with international safety standards.

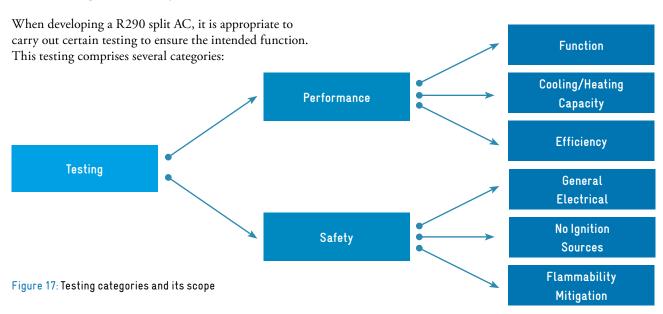
The IEC standards development process allows for a wide participation from countries that maintain an IEC membership. Countries participate through membership of their national committee (NC), either as P-members, who must send experts to participate in technical meetings, or as O-members with a lower level of participation required. Each national committee has one vote on a given technical committee (TC) or sub-committee (SC).

Current extract from the 61D/421/CD (committee draft) document					
Approach	System tightness	Max charge			
Quiescent (current)	Normal tightness	Existing formula			
Quiescent	Enhanced tightness	$M_{max} = 0.35 \times LFL \times h \times A$			
Circulation airflow (high)	Normal tightness	$M_{\text{max}} = 0.5 \times \text{LFL} \times 2.2 \times \text{A}$			
Circulation airflow (low)	Enhanced tightness	$M_{\text{max}} = 0.5 \times \text{LFL} \times 2.2 \times \text{A}$			
Releasable charge	Any tightness	By test			

- 8 If measures which differ from those detailed in the requirements of this standard are found to result in equal or lower risks, then these measures may be applied instead. (EN 378)
- 9 The IEC 60335-2-40: Technical Sub-committee (SC) 61D on Air Conditioning Working Group (WG) 16 was formed in 2015 with a scope of work to address requirements for A2 and A3 refrigerants under IEC 60335-2-40, including R290 in split ACs. WG 16 released a draft proposal in early 2017 that received comments from the national committee members of SC61D and is undergoing further review and discussion by the WG16. The current proposal focuses on a

method for determining maximum charge limits based on a calculation of the releasable charge. WG16 is also working toward additional draft proposals on a charge formula based on design features such as integral airflow and improved tightness. The publication of a revised IEC 60335-2-40 standard based on the outcome of WG 16 is expected to be within a 2019 to 2022 timeframe (Vonsild, 2017).

Safety compliance of R290 split ACs in India


On behalf of *Germany's Federal Ministry for the Environment, Nature Conservation and Nuclear Safety* (BMU), GIZ assisted the AC manufacturing company Godrej & Boyce in India in converting their production from R22 to R290 split type ACs. The project built on Godrej's existing experience with hydrocarbons (R600a) in domestic refrigerators since 2001. GIZ assisted Godrej in designing the unit according to necessary safety features, as well as in converting one of its production lines. The current production capacity of R290 split ACs is 300,000 units per year.

Following the charge limits specified in the European standard EN 60335-2-40, the planned unit with 5 kW cooling capacity allowed a maximum charge of 360 grams. Technology features like microchannel heat exchangers allowed the company to reduce charge sizes to within the charge limit, while ensuring high efficiency at the same time (Godrej, 2018b). Larger charge sizes in combination with adequate safety measures would allow for efficiency gains, and higher capacities for larger room sizes.

© Proklima

4.2. Safety standards for performance and product safety testing of R290 split ACs

Performance

The performance testing is as described in ISO 5151 for fixed conditions and ISO 16358 for seasonal conditions. Functional tests are also described in IEC 60335-2-40. Whether the AC uses a flammable or non-flammable refrigerant the test methodology is identical. However, there may be a few changes to the set-up of the test facility, such as:

- Ensuring a minimal space volume according to the refrigerant charge
- Avoiding any potential sources of ignition within the test spaces
- Fitting of an extract ventialatin system of 500 – 1000 m3/h
- Having one or more gas sensors to identify if and when a leak has occurred and to initiate extract ventilation
- Installing an emergency stop switch on the inside and outside of the rooms to terminate electrical power and also to initiate extract ventilation.

There are several strategies available for the design of these systems.

Safety

IEC 60335-1 and 60335-2-40 include a variety of tests for determining the electrical safety of split AC, such as creepage distances, current draw, earthing/continuity, etc. The majority of these tests are usually applied to most other RAC&HP equipment and are well known.

There are a number of other tests which are less commonly applied or are being newly developed for use with flammable refrigerants, some of which are described in certain safety standards and others which are more embryonic. These include tests which are used to:

- Demonstrate that potentially arcing and sparking components are not located where leaked refrigerant could accumulate (e.g. IEC 60335-2-40 Annex F, EN 378-2 Annex I)
- Prove the effective function of leak detection systems and initiation of mitigation measures (in CD of IEC 60335-2-40: 61D/421/CD)
- Verify that the floor concentration below or surrounding the appliance does not reach the LFL in the event of a leak (e.g. Annex CC of IEC 60335-2-89)
- Identify the maximum releasable charge in the event of a leak (as in IEC 60335-2-40: 61D/421/CD, Annex QQ).

Along with a test such as that of Annex CC, other functional features such as use of circulation airflow for dilution of a release, use of the releasable charge, etc., can be incorporated to test protective measures applied for flammability safety.

FIRST NATURAL REFRIGERANT SPLIT ACS IN THE CARIBBEAN

The Caribbean heat on Grenada and Carriacou makes air conditioners necessary to ensure comfort at home. However, conventional air conditioning units used here are traditionally energy-intensive and use high-GWP refrigerants. In the last years, there have been increasing efforts on the island to introduce more environment-friendly cooling devices, for example by using propane as refrigerant. In order to facilitate the market introduction of propane in split ACs, 30 highly energy-efficient R290 split ACs were imported to Grenada by the National Ozone Unit of the Ministry of Infrastructure Development in cooperation with GIZ as part of the Cool Contributions fighting Climate Change (C4) Project. These R290 split ACs are now used for training of RAC technicians and for a demonstration project on monitoring and evaluating of the energy performance of these units in various fields of application, such as hospitals, government buildings, schools and private buildings. The results so far have been impressive.

More information on climate-friendly cooling in Grenada can be found on:

https://www.international-climate-initiative.com/en/nc/infotheque/videos/film/show_video/show/green_air_conditioners_for_tropical_grenada%3F/?iki_lang=en

"Small Island States that are particularly vulnerable to the impact of global warming and adverse environmental events must find solutions to mitigate against global increase in atmospheric temperatures. The introduction of air conditioning units in the RAC sector using natural refrigerants with zero ODP and ultra-low GWP, clearly demonstrates definitive action at the national level to address an environmental scourge and to promote an environmentally healthy lifestyle."

Leslie Smith, National Ozone Officer, National Ozone Unit Grenada

5. Energy performance testing, standards, and labels

This section provides a brief overview of energy performance metrics, testing standards, and labels relevant for R290 split AC. The energy efficiency of split-type AC is rated and expressed as *Energy Efficiency Ratio* (EER) or *Seasonal Energy Efficiency Ratio* (SEER). The higher the ratio, the more efficient the appliance. Both are used as the basis for determining the (number, star or letter) rating in energy labels, which are placed on split ACs in various markets. Coverage of global mandatory AC energy performance standards doubled worldwide in the last 15 years. Still, there is enormous remaining potential to reduce energy consumption. Globally over 40% of energy used for air conditioning can be saved by applying international best practice standards and additional 20% by applying best available technologies.

Whereas the EER indicates the efficiency of a split AC at one predefined in- and outdoor temperature at full load (therefore used for split ACs with a fixed-speed compressor), the SEER is calculated with the same indoor temperature, but across a range of outside temperatures over the course of a typical cooling season in full and part loads (mainly used for inverter split ACs). SEER calculation involves defining annual temperature profile and usage patterns. Thus, SEER standards have to vary for different countries according to the country's distinct climate profile.

With many markets moving from fixed-speed split ACs to split ACs using a variable speed compressor steered by an inverter, a clear trend from EER to SEER can be observed in many countries. *Table 10* provides an overview of different ratios and their features. Comparing the EER of one model to the SEER of another will not lead to conclusive results as the applied test conditions are different.

Ratio	Calculation and conversion	Testing standards				
Energy Efficiency Ratio (EER)	The EER of a particular cooling device is the ratio of output cooling energy (in BTU/h) to input electrical energy (in Wh) at a given	ISO 5151:2017 – Non-ducted ACs and heat pumps – Testing and rating for performance				
	operating point. EER is generally calculated using a 35°C outside temperature (wet bulb temperature of 24°C) and an inside (actually return air) temperature of 27°C (wet bulb temperature of 19°C)	The ISO 5151 testing standard specifies how to measure the cooling capacity and efficiency of ACs using stipulated test conditions.				
		Approved American National Standard (ANSI)/, U.S. standard) Standard 210/240 for Performance Rating of Unitary Air- conditioning & Air-source Heat Pump Equipment				
Seasonal Energy Efficiency Ratio (SEER), also known as Cooling Seasonal Performance	The SEER is calculated with the same (27°C) indoor temperature, but over a range of out-	ISO 5151:2017 – Non-ducted ACs and heat pumps – Testing and rating for performance				
Factor (CSPF)	side temperatures from 18°C to 40°C, with a certain specified percentage of time in each of 8 bins spanning 2.8°C.	ISO 16358-1:2013 Air-cooled air conditioner and air-to-air heat pumps – Testing and cal- culating methods for seasonal performance factors – Part 1: Cooling seasonal perfor- mance factor.				
		The ISO 16358-1:2013 specifies the testing and calculating methods for the cooling seasonal performance factor of equipment covered by ISO 5151:2017. It allows for fixed speed and inverter ACs to be rated under the same metric and product category, capturing part-load savings from inverters, and provides flexibility in adoption of a country specific temperature bin (i.e. a representation of the country's year-round cooling demands).				

Table 10: Overview of energy performance metrics and testing standards¹⁰

The Indian Seasonal Energy Efficiency Ratio (ISEER)

The *Bureau of Energy Efficiency* (BEE) has introduced the Indian SEER, known as ISEER, in 2015. This nationally adopted SEER takes into account local climate conditions. The methodology and test conditions follow the standard references ISO 16358-1: 2013 and the Indian standard for room ACs IS 1391 Part 1 & 2. ISEER measures energy efficiency of ACs based on a weighted average of the performance at different outside temperatures. The temperature profile is based on a bin temperature range of 24 to 43°C and 1600 operating hours per cooling per annum as illustrated in *Table 11*.

Temperature in °C	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	Total
Average Annual Hours	527	590	639	660	603	543	451	377	309	240	196	165	130	101	79	59	44	31	20	10	5,774
Fraction	9.1	10.2	11.1	11.4	10.4	9.4	7.8	6.5	5.4	4.2	3.4	2.9	2.3	1.7	1.4	1.0	0.8	0.5	0.3	0.2	100
Bin Hours	146	163	177	183	167	150	135	104	86	67	54	46	36	28	22	16	12	9	6	3	1,600

Table 11: Reference outdoor temperature bin distribution adapted from Indian Weather Data Handbook, 2014 (BEE, 2015)

For each bin between 24°C and 43°C, two measurements of cooling capacity and power consumption are taken at full and half load capacity. BEE (2015) provides an excel spreadsheet to calculate the final ISEER value. Furthermore, a related star rating plan was developed and has become mandatory in the beginning of 2018 (*refer to Subchapter 5.2*).

5.1. Minimum energy performance standards

Minimum Energy Performance Standards (MEPS) refer to mandatory energy efficiency performance requirements of regulated products in a country or region. In this context, MEPS for split ACs help to increase the efficiency of split ACs by introducing a minimum efficiency level obligatory for all models sold in a particular market/country. New split AC models introduced to a market subject to the predefined MEPS must meet a minimum efficiency ratio, which is tested according to the testing standards listed in Table 10 and verified by an accredited testing laboratory.

Models not meeting the minimum efficiency requirements may no longer be imported or sold after the effective date of implementation of the standard. Hereby, MEPS encourage manufacturers to improve the efficiency of their products or to innovate and develop more efficient technologies, when applied in conjunction with supporting policies. Before MEPS are adopted, cost-benefit analyses must be performed to ensure the associated regulatory measures provide economic benefits to consumers.

5.2. Energy labelling

Labelling is one of the most direct and effective instruments to deliver information about energy, cost, and environmental performance of split ACs to consumers. Labels are also an important basis for other supporting and financing instruments, such as education, financial incentives (rebates, grants), and financing (loans), as well as green public procurement.

There are, generally, three major groups of labels – endorsement, comparative, and informative. Comparative labels have two major subgroups, continuous comparative and categorical comparative. These labels should be easy to understand and may be supplemented with additional user communication materials. An AC label could include information on EER or SEER, and refrigerants in use. Regular review of the market and of labelling tiers is important to ensure continued impact of the energy label.

Energy performance standards	 ISO 5151:2017 – Non-ducted air conditioner and heat pumps – Testing and rating for performance
	ISO 16358-1:2013 Air-cooled air conditioner and air-to-air heat pumps – Testing and calculating methods for seasonal performance factors – Part 1: Cooling seasonal performance factor.
	ANSI/AHRI 210/240 2017, Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment
Guidance on test methods and efficiency calculation	UN Environment - United for Efficiency (U4E 2019), Model Regulation Guidelines for Energy-Efficient and Climate-Friendly ACs https://united4efficiency.org/wp-content/uploads/2019/09/U4E_AC_Model-Regulation_20190923.pdf
Guidance on designing MEPS and energy labelling	UN Environment – U4E (2017), Accelerating the Global Adoption of Energy efficient and Climate-friendly ACs

The Indian energy labelling for room AC (comparative label)

With the objective of progressively improving the efficiency of cooling appliances and transforming market towards better energy efficiency standards, the BEE has revised its energy labelling of Room ACs. BEE applies a star energy labelling, which has been continuously tightened throughout the last decade so the 5-star levels in 2010 became 3-star in 2015 and will become 1-star in 2018 as per new ISEER methodology. The energy efficiency of ACs has increased by 25% from 2.6 in 2006 to 3.26 in 2015 due to tightening of standards.

		CAMBIOROSOCIO CALLA XXXIII III III III III III III III III
Star Rating	Minimum ISEER	Maximum ISEER
1 Star	3.10	3.29
2 Star	3.30	3.49
3 Star	3.50	3.99
4 Star	4.00	4.49
5 Star	4.50	

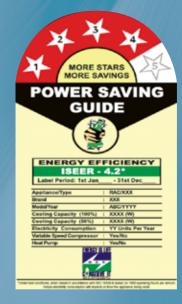


Figure 18: India's mandatory energy label and star rating, valid from 01/01/2018 until 31/12/2019 (BEE, 2015), 5-star label split AC with 5.8 ISEER and R290 refrigerant (Godrej, 2018b)

6. Ecolabelling of R290 room ACs

In addition to legally binding MEPS, voluntary ecolabels are an instrument to push the market towards a better environmental performance of products. Ecolabels predominantly address consumers in order to provide them with the information of environmental preferable products and services. This is to facilitate taking into account environmental concerns in purchasing decisions. Today, there is a plethora of different ecolabels for consumer goods with a majority being company or industry association labels which do not follow standardized procedures regarding the environmental assessment of a product and, thus, can be misleading for buyers. This chapter focuses on environmental labelling programs which have been established according to ISO 14024 "Environmental labels and declarations -Type I environmental labelling – Principles and procedures" and which have developed requirements for the certification of room ACs. For this reason, the U.S. ENERGY STAR requirements for room AC are not considered. In contrast to other ecolabels for ACs, ENERGY STAR exclusively addresses energy efficiency aspects and does not consider the refrigerant.

ISO 14024 ecolabels are voluntary labels which can be operated by public, or private agencies at the national, regional or international level. Products are certified as a result of a third-party verification process of environmental requirements (often referred to as "criteria"), which are based on life-cycle considerations of the product. It is very important not only for the ISO 14024 certification, but also for the credibility of a labelling program that the certification requirements are established independently in a transparent procedure and build on scientific findings. A life cycle impact assessment (LCIA) carried out in a study prior to the establishment of the German ecolabel showed that electricity consumption related to operating ACs causes by far the greatest environmental impacts in all assessed categories such as GHG emissions, terrestrial acidification, and freshwater eutrophication (see Figure 19) (UBA, 2018). The use of R410A, which is the standard refrigerant in AC and exhibits a GWP of 1,924, also caused a considerable contribution to GHG emissions (roughly 20%) (Myhre et al., 2013).

LCIA of product A with R410a

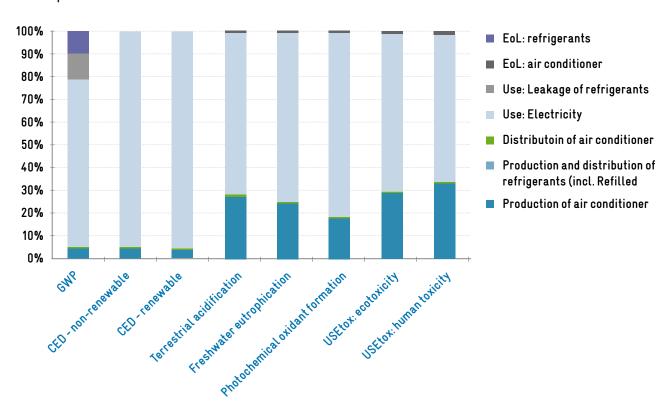


Figure 19: Life cycle impact assessment of a single-split AC using R410A as the refrigerant (UBA, 2018)

Ecolabel criteria for room ACs have been established in China, South Korea, Thailand, Scandinavia¹¹ (termed "airair heat pump"), and Germany as part of the national (multinational in the case of Scandinavia) ecolabel programs. *Table 12* provides an overview of the current (multi-)

national ecolabels for room ACs and their basic criteria. The focus lies on the requirements regarding energy efficiency and the refrigerant. In addition, much attention in all label requirements is given to the noise emitted by the indoor and outdoor unit of a split AC system.

Ecolabel		China Environm. Labelling	Korea Eco-Label	Green Label Thailand	Nordic Swan	Blue Angel
			친환경 환경부			A JUST ENGE
Country/Re	egion	China	South Korea	Thailand	Scandinavia	Germany
Latest Vers	sion	2013	2013	2016	2018	2016
ts	Energy Efficiency ¹²	Range from: SEER≥5.4 (Seasonal Coefficient of Performance (SCOP)≥4.5) for units <4.5 kW SEER≥4.7 (SCOP≥3.7) for units with 7.1 to 14 kW	fulfill first class Energy Efficiency Rating, according to the efficiency man- agement equipment operation regulations	EER>2.82 Based on Thai Industrial Standard TIS 2134: Room ACs: Energy Efficiency (EGAT Label No. 5 requirements)	SCOP23.4 (for European climatic zones C to SCOP24.0 zone A If GWP<150 SCOP23.1 (zone A) and SCOP23.4 (zone C)	SEER≥7 SCOP≥4.6
Selection of Requirements	Refrigerant	Ozone Depleting Potential (ODP)=0 No GWP limit	ODP=0 GWP≤2,500	ODP=0 GWP≤2,500	0DP=0 GWP<2,000	halogen-free, ODP=0 GWP<10
Selection	Noise Level ¹³	Sound Pressure Limits Cooling Capacity (CC) <2.5 kW IDU: 39 dB(A) ODU: 40 dB(A)	CC < 4kW IDU: 45 dB(A) ODU: 55 dB(A) 4kW≤CC<10 kW IDU: 50 dB(A) ODU: 60 dB(A)	Sound Pressure Limits CC <8 kW IDU: 50 dB(A) ODU: 57 dB(A	Sound Power Limits CC <6 kW IDU: 50 dB(A) ODU: 60 dB(A)	Sound Power Limits CC ≤4.5 kW IDU: 50 dB(A) ODU: 58 dB(A) 4.5 kW <cc≤6 55="" 62="" db(a)="" db(a)<="" idu:="" kw="" odu:="" td=""></cc≤6>
Reference		China Environmental United Certification Center (CEC); UBA (2018)	Ecolabel Standard EL401: Air ConditionersKorea Ecolabel Standard EL401: ACs	Green Label Product Room AC (TGL- 7-R3-14)	Nordic Swan Ecolabel	Blue Angel, The German Ecolabel: Stationary ACs DE-UZ 204

Table 12: Overview of ISO 14024 ecolabels for split ACs

References and relevant resources:	
Blue Angel Criteria and comparison to other ISO 14024 ecolabels	UBA (2018), The Blue Angel for Stationary Room Air Conditioners – market analysis, technical developments and regulatory framework for criteria development

¹¹ The Nordic Swan ecolabel was established by the Scandinavian countries Denmark, Finland, Iceland, Norway and Sweden in 1989.

¹² SEER values across countries cannot be directly compared due to different test conditions.

¹³ Direct comparison of noise emission limits between European and Asian labels is not fully possible due to the different measuring methods (sound power level vs. sound pressure level respectively). As a rule of thumb, the sound power level is around 8-10 dB higher than the sound pressure level.

In 2015, China Household Electrical Appliances Association (CHEAA), Foreign Economic Cooperation Office (FECO) of the Ministry of Environmental Protection, United Nations Industrial Development Organization (UNIDO), UNEP and GIZ released an ecolabel for room ACs and Heat Pump Water Heater (HPWH) products regulated under the National Standards GB/T 7725 and GB/T 23137 respectively (CHEAA, 2015). Although it is not certified as ISO 14024 ecolabel, unlike the CEC label, it calls for a GWP limit for the refrigerant lower than 150. The energy efficiency levels are slightly below the CEC definition. The label does not cover noise level, materials, and other requirements.

After a voluntary application at the management office, *China Compulsory Certification* (CCC), test reports, energy efficiency reports, and other relevant documents are examined and verified. With the approval, the applicant is allowed to use the label on the qualified products free of charge. Up to date four companies including Haier, Midea, Gree, and Changhong with eleven R290 split AC products are authorized to use this ecolabel.

Blue Angel certification of Midea hydrocarbon-Inverter split AC

Despite the fact that currently there is no single-split AC using halogen-free refrigerant on the market in Germany, the Chinese company Midea applied for certification of two units with capacities of 9,000 BTU/h (2.6 kW) and 12,000 BTU/h (3.5 kW) (Blue Angel, 2018a). It was approved in February 2018 (Blue Angel, 2018b) being the first split AC to receive the Blue Angel ecolabel. *Figure 20* (below) illustrates the procedure that needs to be accomplished in order to obtain the German ecolabel certificate.¹³

Figure 20: Formal procedure for Blue Angel certification

SUPPLIERS
SUBMIT THEIR
APPLICATION
in order to use the
environmental
label, verification of
compliance with
the requirements is
sent to the awarding body RAL

CHECK OF THE
APPLICATION
for the use of the
environmental label
for compliance with
the requirements by
RAL

FEDERAL STATE submits statement

CONCLUSION
of the contract on
the use of the environmental label
with the supplier/
manufacturer by
RAL

ADVERTISING BY
THE SUPPLIER
using the environmental label based
on the contract on
the use of the environmental label
concluded with
RAL

¹³ The third party verification process of the compliance with the requirements of a certain product group is carried out by RAL gGmbH (https://www.ral.de/en/).

INTRODUCING SUSTAINABLE AIR CONDITIONING TO TECHNICIAN TRAINERS IN THE PHILIPPINES

The demand for space cooling in the Philippines is growing rapidly due to higher ambient temperatures, a rising middle class, as well as the economic and demographic growth. The country's space cooling is currently characterized by its use of low-efficiency ACs with highly climate damaging refrigerants. Without interventions and transition to more energy-efficient appliances and reduction of high-GWP refrigerants and leakages, it is assumed that the RAC sector could account for 13% of global GHG emissions by 2030. In cooperation with the Philippines' Technical Education and Skills Development Authority (TESDA), the Cool Contributions fighting Climate Change (C4) Project has been running a series of train-the-trainer sessions for 32 RAC training professionals covering the proper use of highly efficient R290 split ACs. As a next step, these RAC trainers will cascade what they have learned to their students in

TESDA training centers throughout the archipelago. This two-stage training process will lay the ground for the further development of the market for clean and efficient space cooling in the Philippines.

More information on climate-friendly AC can be found on: https://www.international-climate-initiative.com/en/news/article/climate-friendly_air_conditioning_in_the_philip-pines/?iki_lang=en

"Having introduced the training module on proper installation and servicing of R290 Air Conditioners to AC technician lecturers throughout the country is an important step in the urgently needed transition to green and efficient cooling technologies."

Dr. Elmar Talavera, Executive Director, Technical Educational Skills Development Authority Philippines

7. Installation and servicing of split ACs with flammable refrigerant

All uses of existing and new technologies entail risks that need to be managed. Given the flammability of hydrocarbons, proper and safe handling is of utmost importance in the process of manufacturing, installing, servicing, and repairing R290 split ACs.

Furthermore, proper installation and servicing of split AC units can benefit the efficiency and reliability of the equipment considerably over its lifetime, while avoiding additional costs for electricity and spare parts. At the same time, it reduces safety risks by avoiding problems before they even occur or detecting issues in an early stage to prevent accidents.

Technician charging training unit during R290 split AC training at TESDA © GIZ Proklima/ June B. Oliveros II

Regular and high-quality service and maintenance of split ACs not only ensure the safe and efficient operation of the equipment but also carry several economic benefits for the user (TEAP, 2018):

- Reduced refrigerant leaks
- Improved safety
- Better temperature control and thermal comfort for occupants
- Improved occupant productivity by reliably maintaining the indoor temperature
- Deferred capital expenditure for replacement and repair cost by extending the product lifetime.

7.1. Installation

Manufacturers' installation and operation manuals must explicitly state the conditions for a safe installation of the split AC equipment. Technician must follow these prescribed conditions.

The installation of a R290 single-split AC requires the technician to undertake a set of precautionary steps in addition to the proper installation of a conventional split AC, which are summarised in the following:

Room size and location of IDU and ODU

The technician must start with ensuring that the required minimum room size is met. The room size depends on the amount of R290 charge in the refrigerant circuit of the appliance as well as the installation height of the IDU (refer to *Chapter 4.1*).

This allowable charge size and minimum room area is typically based on the assumption that under the worst-case leak situation, the entire refrigerant charge from a system can leak into a space almost instantaneously; since the vapour is denser than air, it will partially stratify, meaning the concentration will be the highest at floor level. Therefore, the amount of refrigerant is limited so that under these circumstances the concentration of refrigerant will be lower than the LFL and therefore a flammable mixture cannot be formed. Further, the ODU requires minimum separation distances from the wall and other surrounding objects.

Potential ignition sources

The appliance shall be installed in a room without continuously operating ignition sources at or close to floor level (e.g. open flames such as a gas oven or stove).

Piping

The IDU-to-ODU flared pipe connection must be placed outside of the air-conditioned room (occupied space). Alternatively, a permanently technical tight connection can be established (pipe joining by brazing or the use of press-fittings). Maximum pipe length to be installed according to the manufacturer's specification.

Further, the TEAP (2018) report states several measures for the improvement of servicing and maintenance practices:

- Training and education of service technicians, system operators with view to handling new refrigerants.
- Certification and registration of technicians, installation and servicing companies and other entities on handling of refrigerants.
- Policies to encourage regular maintenance and servicing (i.e. maintenance contracts or warranties could be included as part of government procurement).
- Ensure that technicians are equipped with minimum set of necessary tools to use flammable refrigerants.

Electrical installation

Electrical installation for the AC equipment must be executed according to the local technical connection requirements, issued by the responsible energy supply company and according to applicable standards and regulations. One important factor is that all equipment must be electrically grounded. Each unit must have a separate electrical circuit breaker (fuse).

Charging with refrigerant

The split AC system must be charged with the maximum allowable refrigerant charge amount only, prescribed and indicated (system label) by the manufacturer. Topping-up the system with refrigerant is prohibited for installation and servicing activities.

Tools

During installation and maintenance, all tools and equipment should be appropriate and used appropriately for R290. Tools and equipment that could arc/spark in normal use must be placed beyond the anticipated "flammable zone" – typically three metres from locations of possible releases. Non-sparking equipment and tools should be used wherever applicable. For example, if the vacuum pump is not an Ex-type, it should be switched ON and OFF by putting in the plug into the socket. Plug and socket are placed beyond a two metre safety zone.

Labelling

Ensure that warning stickers are visible at the IDU and ODU when refrigerant-containing parts are accessed.

7.2. Servicing and repair

Service and maintenance are critical for safe and reliable operation of air conditioners. In absence of regular service and maintenance the safety status and performance drops significantly. If the service and maintenance of the AC system is properly done, its performance will be maintained and will surely benefit the end user in terms of energy and repair costs. Moreover, the probability of a service breakdown is also reduced.

A basic maintenance includes:

- Cleaning the fins and the unit with blower; safe guarding the fins
- Checking and cleaning of blower and propeller fan
- Checking various electrical components, wiring & thermostat.

System repairs may include accessing a system, either to add refrigerant or remove it, service valves should be employed. Under no circumstances must the system be broken into if it contains any flammable refrigerant or any other gas under pressure, by means of cutting or breaking pipe work.

The following procedure is recommended (GIZ Proklima, 2013):

- Conducting a hazard analysis and risk assessment for the proposed repair
- Electrically isolate the system
- Recovering refrigerant from the sealed refrigeration system
- Repairing/replacing inoperative spare parts
- Cleaning/polishing and flushing the system

- Careful brazing and/or flaring of tubes
- Leak and pressure testing
- Evacuation and vacuum holding
- Refrigerant charging
- Sealing the process tube and closing the valves
- Routine checking for proper operation
- Recording the details of work done.

Safety work area and temporary flammability zones

When working on systems using flammable refrigerants, the technician should consider certain locations as "temporary flammable zones". These are normally regions where at least some emission of refrigerant is anticipated to occur during the normal working procedures, such as recovery, charging and evacuation, typically where hoses may be connected or disconnected. The technician should ensure three metres safety working area (radius of the ODU) in case of any accidental release of refrigerant that forms a flammable mixture with air. The drawing below indicates the arrangement of equipment and tools for service work where flammable refrigerant can be present (Godrej, 2018d).

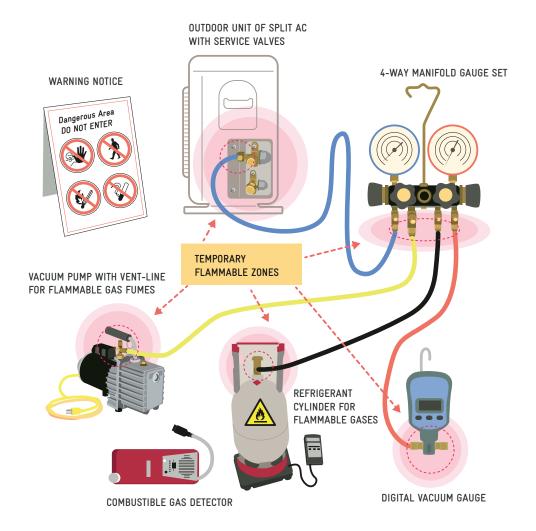


Figure 21: Arrangement of tools and potential temporary flammability zones adapted from Godrej/Hühren, 2018d

7.3. Decommissioning and disposal

When replacing a split AC using R22, R410A or R32 refrigerant with a R290 split AC, it is strongly recommended to recover the refrigerant in an appropriate recovery cylinder and send to destruction or reclamation in order to avoid the massive climate impact that results from releasing HCFC or HFC refrigerants into the atmosphere. GIZ Proklima (2013) describes different recovery methods in detail and provides further information about recycling and reclamation of split AC refrigerants.

Given its negligible global warming impact, releasing R290 into the atmosphere is significantly less harmful to the climate. Under most circumstances, it is acceptable to vent the R290 refrigerant. However, due to its flammability, it is essential to follow the appropriate safety procedure which is elaborated in detail in *chapter 5.3.3*. of the Godrej 'Technician Training Manual for Split Air Conditioners with R290 refrigerant'.

In addition to EN 378 and ISO 5149, which applies to technicians who carry out work on self-contained refrigerating systems, EN 13313: 2011 - Refrigerating systems and heat pumps. Competence of personnel (or ISO/DIS 22712 soon to be issued) defines levels of competence expected across a range of different RAC activities (Evans & Foster, 2015) and serves as the normative backbone for the qualification and certification of RAC technicians who install and repair split AC systems. Close coordination between the split AC industry, government, and related national standardization and educational bodies is required to establish a QCR infrastructure for AC technicians in compliance with these or nationally adopted standards.

7.4. Qualification, certification, and registration of AC technicians

In many countries, the installation, servicing, and repair of split ACs is characterised to a large extend by informal practices. Often, people without any or little formal RAC qualification and certification install and service the equipment, leading to leakages and inefficient operation. Consequently, a formalised *qualification*, *certification*, *and registration* (QCR) infrastructure based on product standards is essential in order to treat R290 split ACs in a safe, energy-efficient, and environmentally sound way. The following points need to be addressed, when establishing a QCR infrastructure (see Figure 22):

Qualification

- Identify local Qualification-partners
- Assess existing education and skill levels
- Assess compliance with relevant national /international standards
- Benchmarking existing Code of Practice
- Define entry and examination levels
- Pre-entry level support
- Adapt materials
- Conduct ToT + assist implementation
- Develop test procedures

Certification

- Identify local certification-partners
- Identify certification needs of people, companies, products
- Develop examination procedures
- Build capacity of certification bodies
- Develop materials, tools and instruments
- Assist labelling, monitoring, and reporting

Registration

- Partner with registration body
- Assess local procedures
- Identify registration needs people, companies, products
- Develop registration scheme and enforcement required
- Assist development of materials, tools + instruments
- · Assist reporting + monitoring

Figure 22: Important steps to establish QCR infrastructure based on HEAT (2017)

References and relevant resources:	
Competence of personnel / training standards	EN 13313: 2011 - Refrigerating systems and heat pumps. Competence of personnel
Guidance on safe handling of flammable refrigerants	GIZ Proklima & TÜV Süd (2010), Guidelines for the safe use of hydrocarbon refrigerant
Split AC installation and servicing Manuals	GIZ Proklima (2013), Good Practices in Installation and Servicing of Room Air-conditioners, RAC Technicians Handbook
	Godrej & Boyce Training Manual for Godrej Split Air-Conditioners with Hydrocarbons (R296 Refrigerant) (available upon request)
	Midea Installation and Service Manual (available upon request)
Recovery, Recycling and Reclamation of Refrigerants	GIZ Proklima (2013), Good Practices in Installation and Servicing of Room Air- conditioners, RAC Technicians Handbook, Chapter 9
Installation Report of R290 split AC	DMT (2018), Report according to the installation of a split type room air conditioner with R290 (available upon request)

Godrej's AC technicians training and certification system

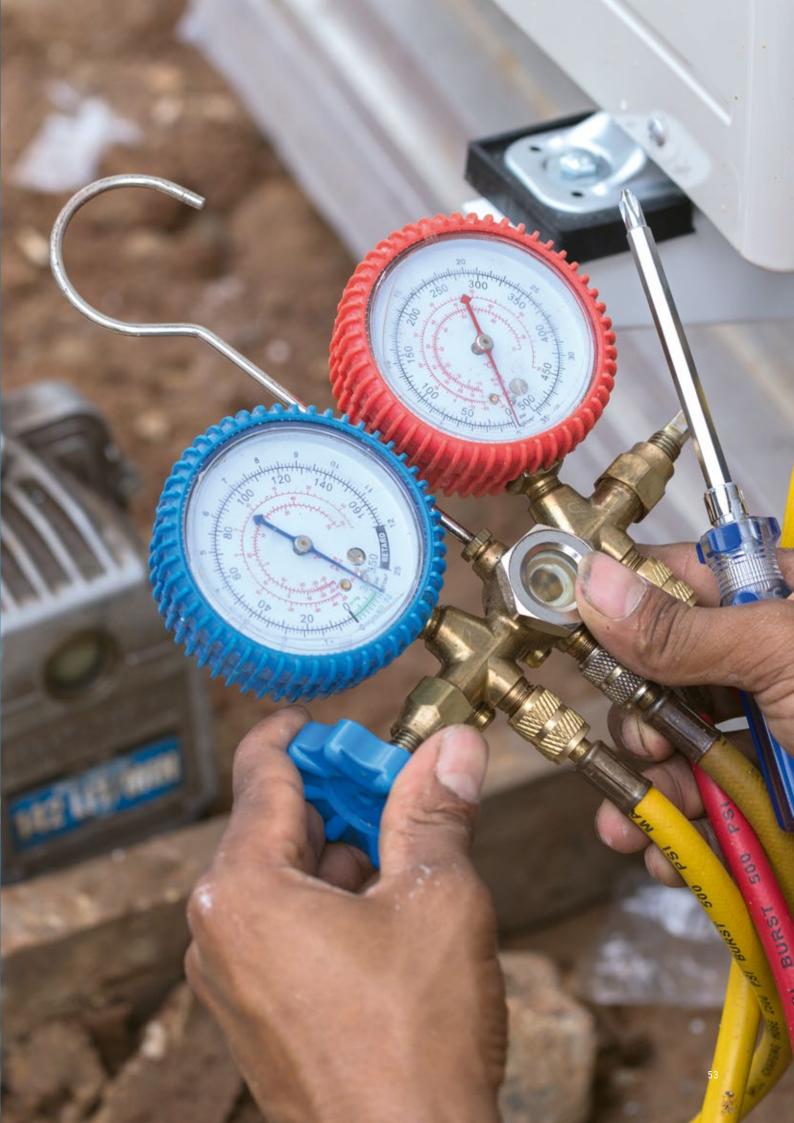
In accordance with the QCR approach, Godrej & Boyce India has established an AC technician training and certification network, which allows the company to fully capture and control the installation, servicing, and repair of R290 split ACs.

Qualification:

- 5 head trainers (trained by a team of Godrej and GIZ) and 18 branch trainers carry out a 6 day-training courses on safe installation, servicing, and repair of R290 split ACs on a regular basis (once every quarter).
- The trainings follow a comprehensive training manual, knowledge updates are disseminated to all Godrej technicians.
- These branch trainers either operate in two company-owned or 30 collaborating independent training institutes.
- Of these, Godrej equipped 12 centres with tools for the introduction of and training with new models. Godrej either trains experienced technicians proposed by (multi-brand) service providers or graduated technicians coming from high schools. All technicians undergo refreshment trainings once a year.
- So far, Godrej maintain a pool of approx. 5,000 qualified and certified R290 split AC technicians

Certification:

Godrej maintains a self-certification system in line with the national certification policies.
 Only certified technicians are permitted to install and service R290 split ACs.


Registration:

- Godrej maintains an online system to manage their AC technician network.
- Each Godrej AC technician receives a unique identity code after accomplishment of training and certification, which allows tracking of the installation and servicing of every single unit and its attribution to the responsible technician.
- After purchase (either in the internet or at other points of sale), the online system chooses the
 technician team who installs and services the appliance based on availability and proximity to
 installation site, always with the aim to install on the day of purchase. Installation is always
 carried out by a team of two technicians.
- After installation, the customer receives the *complete satisfaction number* (CSN) which enables the customer to rate the service offered through a unique code. By default, each costumer will receive three service requests throughout the first year after installation, with one service free of charge during the first year. It is recommended that servicing is done through company trained technicians only. After the first year, a maintenance contract for once a year servicing is offered and proposed in the user manual.
- Registered Godrej technicians (always a team of two) are able to service up to six split ACs units per
 day. Usual servicing includes cleaning of the IDU and ODU there may also be minor repairs in
 case the customer complains of water dripping or noise issues.

"We do the training and certification of AC technicians ourselves, we take full responsibility. Thereby, we ensure a well-functioning work force in the field."

Shakeel M. Jamadar, Dy. General Manager - Head of Service Training, Godrej Appliances India

References

AHRI, AHRI STANDARD 700-2016 WITH ADDENDUM 1 'Specifications for Refrigerants

Available at: http://ahrinet.org/App_Content/ahri/files/STANDARDS/AHRI/AHRI_Standard_700-2016_with_Addendum_1.pdf (Accessed: 25 July 2019).

BEE (2015), Schedule – 19 VARIABLE CAPACITY AIR CONDITIONERS, Available at: https://www.beestarlabel.com/content/files/ inverter%20ac%20schedule%20final.pdf (Accessed: 11 June 2019).

Blue Angel (2018a), Stationary air conditioners,

Available at: https://www.blauer-engel.de/en/products/electric-devices/klimageraete (Accessed: 11 June 2019).

Blue Angel (2018b), Significant reduction of climate impact possible with room air conditioners with natural refrigerants:

Available at: https://www.blauer-engel.de/en/news/significant-reduction-climate-impact-possible-room-air-conditioners-natural-refrigerants

(Accessed: 11 June 2019).

Caravatti (2018), Project Introduction to Midea Products with Refrigerant R290, presented at expert day about Hydrocarbon (R290) split Air Conditioners – Unlocking the European market uptake, 17 October 2018, Nuremberg, Germany

CHEAA (2015), Eco-label for room air conditioner released, Available at: http://en.cheaa.org/contents/483/5335.html (Accessed: 11 December 2018).

DIN 8960:1998-11, Refrigerants - Requirements and symbols, Available at: https://www.beuth.de/en/standard/din-8960/5146119

EIA (2017), Smarter standards vital for Kigali Amendment Success, Available at: https://content.eia-global.org/assets/2017/ Standard+In+Cooling_FINAL.pdf (Accessed: 11 June 2019).

Evans & Foster (2015), Sustainable Retail Refrigeration, John Wiley & Sons, Ltd

GIZ Proklima & TÜV Süd (2010), Guidelines for the safe use of hydrocarbon refrigerants,

Available at: https://mia.giz.de/qlink/ID=42856000

GIZ Proklima (2012), Guidelines for the safe use of flammable refrigerants in the production of room air-conditioners

Available at: https://mia.giz.de/glink/ID=42858000

(Accessed: 25 July 2019).

(Accessed: 25 July 2019).

GIZ Proklima (2013), Good Practices in Installation and Servicing of Room Air Conditioners Handbook,

Available at: https://eeslindia.org/content/dam/doitassets/eesl/pdf/programmes/HPMP/pdf/HPMP%20Manual.pdf (Accessed: 6 August 2019).

GIZ Proklima (2015), Green Cooling Technologies: Market trends in selected refrigeration and air conditioning subsectors, Chapter 4

Available at: https://www.green-cooling-initiative.org/data/user_upload/Downloads/Publications/EN_Green_Cooling_Technologies_-_Market_trends_in_selected_refrigeration_and_air_conditioning_subsectors.pdf

GIZ Proklima (2018a), Cost, energy and climate performance assessment of Split-type ACs in Asian Countries

Available at: https://d2oc0ihd6a5bt.cloudfront.net/wp-content/uploads/sites/837/2018/06/Phillip-Muzunger-Cost-Energy-and-Climate-Performance-Assessment-of-Split-type-ACs-in-Asian-Countries.pdf

(Accessed: 25 July 2019)

GIZ Proklima (2018b), International Safety Standards in Air Conditioning, Refrigeration & Heat Pump,

Available at: https://www.international-climate-initiative.com/fileadmin/Dokumente/2018/180712_Safety_Standards.pdf (Accessed: 25 July 2019).

GIZ Proklima (2018c), Coordinating finance for sustainable refrigeration and air conditioning Available at: https://mia.giz.de/qlink/ID=246034000 (Accessed: 25 July 2019).

Godrej 2018a (2018a), Presentation Study Trip, Jamadar, S., April 2018, Mumbai, India

Godrej (2018b), Godrej NXW AC

Available at: http://godrejnxw-ac.com/index.php
(Accessed: 7 November 2019).

Godrej (2018c), NXW product information

Godrej / R. Hühren (2018d), Training manual for Godrej Split Air Conditioners with hydrocarbons (R290 refrigerant)

HEAT GmbH (2017), Qualification, Certification & Registration of RAC Services, Products and Companies, power point presentation

hydrocarbons21 (2018), 8 major Chinese RAC makers commit to selling 220k R290 units in 2019,

Available at: http://hydrocarbons21.com/articles/8713/8_major_chinese_rac_makers_commit_to_sell_220k_r290_units_in_2019 (Accessed: 11 December 2018).

IEA (2018), The Future of Cooling - Opportunities for energy-efficient air conditioning,

Available at: https://www.iea.org/futureofcooling/(Accessed: 11 June 2019).

ISO 817:2014, Refrigerants – Designation and safety classification, Available at: https://www.iso.org/standard/52433.html

JARN (2018), World Air Conditioner Markets: 1 OVERVIEW, Available at: https://ejarn.com/detail.php?id=49166&l_id=2 (Accessed: 11 June 2019). JRAIA (2018), World Air Conditioner Demand by Region,
Available at: https://www.jraia.or.jp/english/World_AC_Demand.pdf
(Accessed: 7 March 2019).

Myhre et al. (2013), Anthropogenic and Natural Radiative Forcing.
In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,

Available at: http://www.climatechange2013.org/images/report/WG1AR5_Chapter08_FINAL.pdf (Accessed: 11 June 2019).

Park et. al (2017), Assessment of commercially available energyefficient room air conditioners including models with low global warming
potential (GWP) refrigerants, Lawrence Berkley National Laboratory,
Available at: https://eta.lbl.gov/sites/default/files/publications/
assessment_of_racs_lbnl-_2001047.pdf
(Accessed: 11 June 2019).

Park et al. (2019), Challenges and Recommended Policies for Simultaneous Global Implementation of Low-GWP Refrigerants and High Efficiency in Room Air Conditioners, Lawrence Berkeley National Laboratory, Available at: http://eta-publications.lbl.gov/sites/default/files/challenges_and_recommended_policies_report.pdf (Accessed: 7 August 2019).

TEAP (2019), Decision XXX/5 Task Force Report on Cost And Availability of Low-GWP Technologies/Equipment that Maintain/Enhance Energy Efficiency (Volume 4),

Available at: http://conf.montreal-protocol.org/meeting/oewg/oewg-41/presession/SitePages/Home.aspx (Accessed: 5 August 2019).

TEAP (2018), Decision XXX/10 Task Force Report on Issues related to Energy Efficiency while Phasing Down Hydrofluorocarbons (Volume 5), Available at: http://conf.montreal-protocol.org/meeting/oewg/oewg-40/presession/Background-Documents/TEAP_DecisionXXIX-10_Task_Force_EE_May2018.pdf (Accessed 7 Janaury 2019)

U4E (2017), Accelerating the Global Adoption of Energy-efficient and Climate-friendly Air Conditioners,

Available at: https://united4efficiency.org/wp-content/uploads/2017/06/U4E-ACGuide-201705-Final.pdf, (Accessed: 11 June 2019).

UBA (2018), The Blue Angel for Stationary Room Air Conditioners – market analysis, technical developments and regulatory framework for criteria development,

Available at: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-03-15_texte_22-2018_blue-angel-airconditions.pdf, (Accessed: 11 June 2019).

Usinger (2016), Energy Efficiency in the RAC Sector, Green Cooling Initiative, June 2016, Tel Aviv, Israel,

Available at: http://www.sviva.gov.il/English/env_topics/climat-echange/Mitigation/Documents/Energy-Efficiency-in-the-RAC-Sector-June-2016.pdf

(Accessed: 8 November 2018).

Vonsild (2017), IEC/TC61/SC61D/W616: Working group to address A2 and A3 refrigerants for IEC 60335-2-40, presented as Convener of W616 at 0EW6-39 Standards Workshop, July 2017

Available at: http://conf.montreal-protocol.org/meeting/workshops/safety-and-standards/presentations/English/Session%20I_4_Asbjørn%20Vonsild.pdf

(Accessed: 25 July 2019).

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 Friedrich-Ebert-Allee 36 + 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66

E info@giz.de I www.giz.de